已知數(shù)列是等比數(shù)列,首項(xiàng).
(l)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列,證明數(shù)列是等差數(shù)列并求前n項(xiàng)和.
(1);(2)證明見解析,.
解析試題分析:(1) 由已知,及是等比數(shù)列,求出數(shù)列的公比為,根據(jù)等比數(shù)列的通項(xiàng)公式:,將對(duì)應(yīng)量代入求解;(2)先由(1)中的結(jié)果結(jié)合對(duì)數(shù)的運(yùn)算公式得到,,得到,然后證明是一個(gè)常數(shù),那么數(shù)列是等差數(shù)列得證.由證明過程可知,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的前項(xiàng)和公式求數(shù)列的前項(xiàng)和.
試題解析:(1)由,及是等比數(shù)列,
得, 2分
. 4分
(2)由, 6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/62/9/unwbg.png" style="vertical-align:middle;" />,
所以是以為首項(xiàng),以為公差的等差數(shù)列. 9分
所以 12分
考點(diǎn):1.等比數(shù)列的前項(xiàng)和;2.等差數(shù)列的前項(xiàng)和;3.等比數(shù)列的性質(zhì);4.等差數(shù)列的性質(zhì);5.對(duì)數(shù)及對(duì)數(shù)運(yùn)算
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上的最大值為
求數(shù)列的通項(xiàng)公式;
求證:對(duì)任何正整數(shù),都有;
設(shè)數(shù)列的前項(xiàng)和,求證:對(duì)任何正整數(shù),都有成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是曲線C:上的一點(diǎn)(其中),過點(diǎn)作與曲線C在處的切線垂直的直線交軸于點(diǎn),過作與軸垂直的直線與曲線C在第一象限交于點(diǎn);再過點(diǎn)作與曲線C在處的切線垂直的直線交軸于點(diǎn),過作與軸垂直的直線與曲線C在第一象限交于點(diǎn);如此繼續(xù)下去,得一系列的點(diǎn)、、、、。(其中)
(1)求數(shù)列的通項(xiàng)公式。
(2)若,且是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和滿足,其中.
⑴若,求及;
⑵若,求證:,并給出等號(hào)成立的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均是正數(shù),其前項(xiàng)和為,滿足.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
單調(diào)遞增數(shù)列的前項(xiàng)和為,且滿足,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列的前n項(xiàng)和,已知對(duì)任意的,點(diǎn)均在函數(shù)的圖像上.
(1)求r的值.
(2)當(dāng)b=2時(shí),記,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知數(shù)列的前項(xiàng)和.
(1)證明:數(shù)列是等差數(shù)列;
(2)若不等式對(duì)恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com