函數(shù)f(x)=x3-x2+ax+b在點x=1處的切線與直線y=2x+1垂直,則a=
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用,直線與圓
分析:由題意求導f′(x)=3x2-2x+a,由垂直知斜率之積為-1,即f′(1)•2=-1,從而解得.
解答: 解:由題意,
f′(x)=3x2-2x+a,
∵函數(shù)f(x)=x3-x2+ax+b在點x=1處的切線與直線y=2x+1垂直,
∴f′(1)•2=-1;
故(3-2+a)•2=-1;
解得,a=-
3
2

故答案為:-
3
2
點評:本題考查了導數(shù)的求法及其幾何意義,同時考查了直線與直線位置關(guān)系的應用,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,正方形OABC的邊長為2.
(1)在其四邊或內(nèi)部取點P(x,y),且x,y∈Z,求事件:“|OP|>1”的概率;
(2)在其內(nèi)部取點P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面積均大于
2
3
”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA是圓O的切線,A為切點,PA=4,PB=2,則直徑AC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+3
x+1
,g(x)=|x-
a
x
|.
(1)a=-2時,求函數(shù)g(x)的最小值;
(2)若對?t∈[1,3],在區(qū)間[1,3]總存在兩個不同的x,使得g(x)=f(t),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x).
(1)求f(x)的最小正周期;
(2)若cosθ=
4
5
,θ∈(
2
,2π)
,求f(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x
(其中e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的極值;
(2)設函數(shù)g(x)=x2f(x)-mx,其中m∈R,求g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,且直線y=2x為雙曲線C的一條漸近線,點P為C上一點,如果|PF1|-|PF2|=4,那么雙曲線C的方程為
 
;離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈(
2
,+∞),求
3a2-6
a2+1
的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若程序框圖如圖所示,視x為自變量,y為函數(shù)值,可得函數(shù)y=f(x)的解析式,那么函數(shù)f(x)-4在x∈R上的零點個數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

同步練習冊答案