分析 (1)連接PN,證明四邊形AMNP為平行四邊形,推出AP∥MN.即可證明AP∥平面SMC.
(2)由三視圖可知頂點S到底面ABCD的距離為2,點N到底面ABCD的距離為h=1,利用等體積通過VBNMC=VNMBC=$\frac{1}{3}$S△MBC•h求解即可.
解答 解:(1)由三視圖可知底面ABCD為正方形,連接PN,
∵P,N分別是SD,SC的中點,
∴PN∥DC且PN=$\frac{1}{2}$DC.
∵底面ABCD為正方形,M為AB的中點,
∴AM∥DC且AM=$\frac{1}{2}$DC,
∴AM∥PN且AM=PN,
∴四邊形AMNP為平行四邊形,∴AP∥MN.
又AP?平面SMC,MN?平面SMC,∴AP∥平面SMC.
(2)由三視圖可知頂點S到底面ABCD的距離為2,
∴點N到底面ABCD的距離為h=1,
根據(jù)三棱錐的體積公式可以求得:
VBNMC=VNMBC=$\frac{1}{3}$S△MBC•h=$\frac{1}{3}$×$\frac{1}{2}$×1×$\frac{1}{2}$×1=$\frac{1}{12}$.
點評 本題考查直線與平面平行的判定定理的應(yīng)用,幾何體的體積的求法,考查轉(zhuǎn)化思想以及空間想象能力計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 2 | C. | $3+2\sqrt{2}$ | D. | $4+2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{3}$ | B. | $\frac{14}{3}$ | C. | $\frac{15}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0) | B. | (-1,0) | C. | (0,1) | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com