如圖,在直四棱柱ABCD-A1B1C1D1中,已知底面ABCD是邊長為1的正方形,側(cè)棱C1C垂直于底面ABCD,且C1C=2,點(diǎn)P是側(cè)棱C1C的中點(diǎn).
(1)求證:AC1∥平面PBD;
(2)求證:A1P⊥平面PBD;
(3)求三棱錐A1-BDC1的體積V.
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(1)連接AC,AC∩BD=O,連接OC1,則O是AC的中點(diǎn),利用三角形的中位線的性質(zhì)證明AC1∥OP,即可證明AC1∥平面PBD;
(2)依題意可得PB=
2
,A1P=
3
,A1B=
5
,滿足A1P2+PB2=A1B2,可得A1P⊥PB,進(jìn)而可得A1P⊥PD,由線面垂直的判定定理可得結(jié)論;
(3)所求幾何體的體積等于四棱柱的體積減去四個(gè)體積相等的三棱錐的體積,由數(shù)據(jù)分別求得體積作差可得答案.
解答: (1)證明:連接AC,AC∩BD=O,連接OC1,則O是AC的中點(diǎn),
∵點(diǎn)P是側(cè)棱C1C的中點(diǎn),
∴AC1∥OP,
∵AC1?平面PBD,OP?平面PBD,
∴AC1∥平面PBD;
(2)證明:CP=1,CB=1,在Rt△BCP中,PB=
2

同理可知,A1P=
3
,A1B=
5

所以A1P2+PB2=A1B2,則A1P⊥PB,
同理可證,A1P⊥PD,
由于PB∩PD=P,PB?平面PBD,PD?平面PBD,
∴A1P⊥平面PBD.
(3)解:易知三棱錐A1-BDC1的體積等于四棱柱的體積減去四個(gè)體積相等的三棱錐的體積,
即AB×AD×A1A-4×
1
3
×(
1
2
AB×AD)×A1A=
1
3
×1×1×2=
2
3
點(diǎn)評(píng):本題考查直線與平面、平行垂直的判定,涉及三棱錐體積的求解,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),周期為3,且x∈[0,1]時(shí),f(x)=x2-x+2,求f(-2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(2x+
π
3
)+1.
(Ⅰ)先列表,再用“五點(diǎn)法”畫出該函數(shù)在一個(gè)周期內(nèi)的簡圖;
(Ⅱ)寫出該函數(shù)在[0,π]的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2-3x.
(1)若f(x)在x=3處有極值,求a的值;
(2)在(1)的條件下,求f(x)在區(qū)間[0,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:sin4α+cos4α=1-2sin2αcos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣:A=
.
01
10
.
,B=
.
1 
2 
.
,則AB的幾何意義是?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)都是正數(shù),若an2≤an-an+1對(duì)于一切n∈N*都成立.
(1)證明{an}中的任一項(xiàng)都小于1; 
(2)探究an
1
n
的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
sin
x
2
+cos
x
2
(x∈R).
(1)求它的振幅,周期及對(duì)稱中心;
(2)求這個(gè)函數(shù)的單調(diào)遞增區(qū)間;
(3)說明該函數(shù)的圖象可由f(x)=sinx的圖象經(jīng)過怎樣的變換而得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某運(yùn)動(dòng)員在一個(gè)賽季的30場比賽中得分的莖葉圖,則得分的中位數(shù)與眾數(shù)之和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案