如圖1,在正三角形ABC中,已知AB=5,E、F、P分別是AB、AC、BC邊上的點(diǎn),設(shè)數(shù)學(xué)公式,將△ABC沿EF折起到△A1EF的位置,使二面角A1-EF-B的大小為數(shù)學(xué)公式,連接A1B、A1P(如圖2).
(1)求證:PF∥平面A1EB;
(2)若EF⊥平面A1EB,求x的值;
(3)當(dāng)EF⊥平面A1EB時,求平面A1BP與平面A1EF所成銳二面角的余弦值.

(1)證明:∵CF=CP=x,CA=CB,∴PF∥BE
∵PF?平面A1BE,BE?平面A1BE
∴PF∥平面A1EB;
(2)解:若EF⊥平面A1EB,則EF⊥AE,∠AEF=90°
∵∠EAF=60°,∴
,∴x=1
(3)解:∵二面角A1-EF-B的大小為,且EF⊥平面A1EB,
∴EF⊥BE,A1E⊥EF,平面A1EF∩平面BEF=EF
∴A1E⊥平面BEF
∵BE?平面BEF
∴A1E⊥BE
∴EF,BE,A1E兩兩互相垂直
以E為原點(diǎn),建立空間直角坐標(biāo)系,則由已知得,BE=1,A1E=2,PF=FC=PC=1,EF=2
∴E(0,0,0),A1(0,0,2),B(3,0,0),P(1,2,0),F(xiàn)(0,2,0)

是平面A1EF的一個法向量
設(shè)平面A1BP的法向量為,則,∴,∴=(
∴平面A1BP與平面A1EF所成銳二面角的余弦值為=
分析:(1)證明PF∥平面A1EB,利用線面平行的判定定理,證明PF∥BE即可;
(2)若EF⊥平面A1EB,則EF⊥AE,∠AEF=90°,從而可得,故可求x的值;
(3)證明EF,BE,A1E兩兩互相垂直,以E為原點(diǎn),建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn)與向量,確定是平面A1EF的一個法向量,平面A1BP的法向量=(),利用向量的數(shù)量積即可求平面A1BP與平面A1EF所成銳二面角的余弦值.
點(diǎn)評:本題主要考查線面垂直、直線和平面所成的角、二面角等基礎(chǔ)知識,對于圖形的翻折問題,關(guān)健是利用翻折前后的不變量,二面角的平面角的適當(dāng)選取是立體幾何的核心考點(diǎn)之一.是高考數(shù)學(xué)必考的知識點(diǎn)之一
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年四川省高二第二階段考試?yán)砜茢?shù)學(xué) 題型:選擇題

如圖1,在正三角形ABC中,D、E、F分別為各邊的中點(diǎn),G、H、I、J分別為AF、AD、BE、DE的中點(diǎn).將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的度數(shù)為(    )

A.90°             B.60°            C.45°          D.0°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京模擬題 題型:解答題

如圖所示,正三角形ABC的邊長為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,
(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求二面角E-DF-C的余弦值;
(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,已知在△ABC中,=a,=b,=c.若a·b=b·c=c·a.求證:△ABC為正三角形.

圖1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大;

(II)當(dāng)時,求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個動點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面

(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當(dāng)時,都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省樂山一中高二第二階段考試?yán)砜茢?shù)學(xué) 題型:單選題

如圖1,在正三角形ABC中,D、E、F分別為各邊的中點(diǎn),G、H、I、J分別為AF、AD、BE、DE的中點(diǎn).將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的度數(shù)為(   )

A.90°            B.60°            C.45°         D.0°

查看答案和解析>>

同步練習(xí)冊答案