已知函數(shù)f(x)=
-log2x(x>0)
1-x2(x≤0)
,則不等式f(x)>0的解集為(  )
A、.{x|0<x<1}
B、{x|-1<x≤0}
C、{x|x>-1}
D、{x|-1<x<1}
考點(diǎn):對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由不等式f(x)>0可得
x>0
-log2x>0
 ①,或
x≤0
1-x2>0
②.分別求得①、②的解集,再取并集,即得所求.
解答: 解:∵函數(shù)f(x)=
-log2x(x>0)
1-x2(x≤0)
,則由不等式f(x)>0可得
x>0
-log2x>0
 ①,或
x≤0
1-x2>0
②.
解①求得0<x<1,解②求得-1<x≤0,
綜合可得,-1<x<1,
故選:D.
點(diǎn)評(píng):本題主要對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),對(duì)數(shù)不等式、一元二次不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在對(duì)數(shù)函數(shù)y=log2x圖象上,從x=2到x=4的平均變化率是多少?此變化率的幾何意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:實(shí)數(shù)x滿(mǎn)足x2-4ax+3a2<0,其中a<0;命題q:實(shí)數(shù)x滿(mǎn)足x2+3x-10>0,且q是p的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216);
(2)解含x的不等式:(
1
4
)x-
3
2x
+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(0,+∞)上的增函數(shù),f(2)=1,f(xy)=f(x)+f(y).
(1)求證:f(x2)=2f(x);
(2)求f(1)的值;
(3)若f(x)+f(x+3)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=9x-a•3x+3.
(1)當(dāng)a=4時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)=0在[0,1]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+2y=4(x,y∈R+),則
2
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線(xiàn)y2=4x上一點(diǎn)M到焦點(diǎn)F的距離為5,則點(diǎn)M的橫坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log2(x2+3),x<0
-tanx,0≤x<
π
2
,則f(f(
π
4
))=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案