(Ⅰ)當(dāng)a=1時(shí),f(x)=(x
2-2x+1)e
x,
∴f′(x)=(2x-2)e
x+(x
2-2x+1)e
x=(x
2-1)e
x,
令f′(x)=0,得x
1=-1,x
2=1,
列表討論如下:
x |
(-∞,-1) |
-1 |
(-1,1) |
1 |
(1,+∞) |
f′(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
↑ |
極大值 |
↓ |
極小值 |
↑ |
∴f(x)的極大值是f(-1)=
;極小值是f(1)=0.
(Ⅱ)由題意得,f′(x)=(2ax-a-1)e
x+[ax
2-(a+1)x+1)e
x=[ax
2+(a-1)x-a]e
x,
由f(x)在區(qū)間[0,1]上單調(diào)遞減得,f′(x)≤0在[0,1]上恒成立,
即ax
2+(a-1)x-a≤0在[0,1]上恒成立,
令g(x)=ax
2+(a-1)x-a,x∈[0,1],
①當(dāng)a=0時(shí),g(x)=-x≤0在[0,1]上恒成立;
②當(dāng)a>0時(shí),g(x)=ax
2+(a-1)x-a過點(diǎn)(0,-a),
即g(0)=-a<0,只需g(1)=a+a-1-a=a-1≤0,就滿足條件;
解得a≤1,則此時(shí)0<a≤1,
③當(dāng)a<0時(shí),同理有g(shù)(0)=-a>0,
∴ax
2+(a-1)x-a≤0在[0,1]上不可能恒成立,
綜上得,所求的a的取值范圍是[0,1].
(Ⅱ)由(Ⅰ)得f'(x)=(x
2-1)e
x,
假設(shè)當(dāng)x>1時(shí)存在[m,n]使函數(shù)f(x)在[m,n]上的值域也是[m,n],且(n>m>1)
∵當(dāng)x>1時(shí),f'(x)=(x
2-1)e
x>0,
∴f(x)在區(qū)間(1,+∞)上是增函數(shù),
∴
,即
,
則問題轉(zhuǎn)化為(x-1)
2e
x-x=0有兩個(gè)大于1的不等實(shí)根.
設(shè)函數(shù)h(x)=(x-1)
2e
x-x(x>1),h′(x)=(x
2-1)e
x-1,
令φ(x)=(x
2-1)e
x-1,∴φ′(x)=(x
2+2x-1)e
x,
當(dāng)x>1時(shí),φ′(x)>0,
∴φ(x)在(1,+∞)上是增函數(shù),即h′(x)在(1,+∞)上是增函數(shù)
∴h′(1)=-1<0,h′(2)=3e
2-1>0
∴存在唯一x
0∈(1,2),使得h′(x
0)=0,
當(dāng)x變化時(shí),h′(x),h(x)的變化情況如下表:
x |
(1,x0) |
x0 |
(x0,+∞) |
h′(x) |
- |
0 |
+ |
h(x) |
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
∴h(x)在(1,x
0)上單調(diào)遞減,在(x
0,+∞)上單調(diào)遞增.
∴h(x
0)<h(1)=-1<0
∵h(yuǎn)(2)=e
2-2>0
∴當(dāng)x>1時(shí),h(x)的圖象與x軸有且只有一個(gè)交點(diǎn),
即方程(x-1)
2e
x-x=0有且只有一個(gè)大于1的根,與假設(shè)矛盾,
故當(dāng)x>1時(shí),f(x)不存在[m,n]使函數(shù)f(x)在[m,n]上的值域也是[m,n].