(13分) 已知曲線
C:
的橫坐標分別為1和
,且
a1=5,數(shù)列{
xn}滿足
xn+1 =
tf (
xn – 1) + 1(t > 0且
).設(shè)區(qū)間
,當(dāng)
時,曲線
C上存在點
使得
xn的值與直線
AAn的斜率之半相等.
(1) 證明:
是等比數(shù)列;
(2) 當(dāng)
對一切
恒成立時,求
t的取值范圍;
(3) 記數(shù)列{
an}的前
n項和為
Sn,當(dāng)
時,試比較
Sn與
n + 7的大小,并證明你的結(jié)論.
(Ⅰ)略 (Ⅱ) 0<
t<
(Ⅲ)
:(1) ∵由已知得 ∴
由
∴
即
∴
是首項為
2+1為首項,公比為2的等比數(shù)列. ········ 4分
(2) 由(1)得
=(
2+1)·2
n-1,∴
從而
an=2xn-1=1+
,由
Dn+1Dn,得
an+1<an,即
.
∴0<2
t<1,即0<
t<
9分
(3) 當(dāng)
時,
∴
不難證明:當(dāng)n≤3時,2
n-1≤n+1;當(dāng)n≥4時,2
n-1>n+1.
∴當(dāng)n≤3時,
當(dāng)n≥4時,
綜上所述,對任意的
13分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列,a1=b1=1,a2+a4=b3,b2·b4=a3,分別求出{an}及{bn}的前n項和S10及T10.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
滿足
,
,
.
⑴求數(shù)列
的通項公式;
⑵求數(shù)列
的前
項和
;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
等差數(shù)列
及等比數(shù)列
中,
則當(dāng)
時有
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列
是由正整數(shù)組成的數(shù)列,
,且滿足
,其中
,
,且
,則
=
,
=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
當(dāng)
時,
.
是以
為公比的等比數(shù)列,其首項為
,
已知數(shù)列
中,
,求數(shù)列
的通項公式.
查看答案和解析>>