已知Rt△ABC中,∠C=,∠B=,AB=2,M、N分別為AB、AC的中點,沿MC、MN將其折成三棱錐.求這個三棱錐的體積

答案:
解析:

  如圖所示

  在Rt△ABC中,AN=CN=,BC=1,MN=

  ∴S△ACN·BC·

  又 MN⊥NA,MN⊥NC

  ∴MN⊥面ANC

  ∴VM—ANCS△ACN·MN=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知Rt△ABC中,∠BAC=90°,AD⊥BC,垂足為D,DF⊥AC,垂足為F,DE⊥AB,垂足為E.
求證:(Ⅰ)AB•AC=AD•BC;
(Ⅱ)AD3=BC•BE•CF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC 中,AB=AC=
2
,AD是斜邊BC 上的高,以 AD為折痕,將△ABD折起,使∠BDC為直角.
(1)求證:平面ABD⊥平面BDC;
(2)求證:∠BAC=60°
(3)求點D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ABC=90°,AB=4,BC=2,D,E分別是AB,AC的中點,將△ADE沿著DE翻折成△A1DE,使得平面A1DE⊥平面DECB,F(xiàn)是A1B上一點且A1E∥平面FDC.
(1)求
A1FFB

(2)求三棱錐D-A1CF的體積.
(3)求A1B與平面FDC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1-4-6,已知Rt△ABC中,∠ACB =90°,CDABDDEACE,DFBCF.求證:AE·BF·AB=CD3.

圖1-4-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高二(下)入學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知Rt△ABC中,∠ABC=90°,AB=4,BC=2,D,E分別是AB,AC的中點,將△ADE沿著DE翻折成△A1DE,使得平面A1DE⊥平面DECB,F(xiàn)是A1B上一點且A1E∥平面FDC.
(1)求
(2)求三棱錐D-A1CF的體積.
(3)求A1B與平面FDC所成角的大。

查看答案和解析>>

同步練習(xí)冊答案