精英家教網 > 高中數學 > 題目詳情

已知橢圓的兩焦點為F1,F2,上頂點為B,那么△F1BF2的外接圓方程為________

答案:
解析:

x2+y2=1


練習冊系列答案
相關習題

科目:高中數學 來源:2007-2008學年廣東省惠州一中高三(上)數學寒假作業(yè)5(理科)(解析版) 題型:選擇題

已知橢圓的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年寧夏銀川一中高三(下)第六次月考數學試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點().

查看答案和解析>>

科目:高中數學 來源:2011-2012學年高二(上)周考數學試卷(10)(解析版) 題型:選擇題

已知橢圓的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2012年內蒙古包頭市高考數學三模試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點().

查看答案和解析>>

科目:高中數學 來源:高考數學一輪復習必備(第61課時):第八章 圓錐曲線方程-橢圓(解析版) 題型:選擇題

已知橢圓的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案