正三棱柱
—
的底面邊長為
,側(cè)棱長為
,則
與側(cè)面
所成的角為( )
如圖,取
中點
,連接
。因為
為正三棱柱,所以
面
,
為正三角形。因為
為
中點,所以
。因為
面
,所以
,所以
面
,從而
就是
與側(cè)面
所成角。因為正三棱柱
的底面邊長為
,側(cè)棱長為
,所以
,從而
,則
,故選A
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
給出以下四個命題
①如果直線
和平面
內(nèi)無數(shù)條直線垂直,則
⊥
;
②如果平面
//
,直線
,直線
,則
、
兩條直線一定是異面直線;
③如果平面
上有不在同一直線上的三個點,它們到平面
的距離都相等,那么
//
;
④如果
、
是異面直線,則一定存在平面
過
且與
垂直
其中真命題的個數(shù)是:( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分) 已知在正四棱錐
-
中(如圖),高為1
,其體積為4
,求異面直線
與
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
給出下列命題:(1)三點確定一個平面;(2)在空間中,過直線外一點只能作一條直線與該直線平行;(3)若平面
上有不共線的三點到平面
的距離相等,則
;(4)若直線
滿足
則
.其中正確命題的個數(shù)是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題8分)如圖,正三棱柱底面邊長為
.
(1)若側(cè)棱長為
,求證:
;
(2)若
AB1與
BC1成
角,求側(cè)棱長
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知三棱錐P=ABC中,PA⊥PC,D為AB的中點,M為PB的中點,且AB=2PD.
(1)求證:DM//面PAC;
(2)找出三棱錐P—ABC中一組面與面垂直的位置關系,并給出證明(只需找到一組即可).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)在平行六面體
中,
是
的中點,
.
(1)化簡:
;
(2) 設
,
,
,若
,求
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使點A′與點B之間的距離A′B=
。
(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求異面直線A′C與BD所成的角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
垂直于矩形
所在的平面,
分別是
的中點.
(I)求證:
平面
;
(Ⅱ)求證:平面
平面
.
查看答案和解析>>