已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),點(diǎn)P是點(diǎn)F關(guān)于y軸的對稱點(diǎn),過點(diǎn)P的動直線ι交拋物線與A,B兩點(diǎn).
(1)若△AOB的面積為
5
2
,求直線ι的斜率;
(2)試問在x軸上是否存在不同于點(diǎn)P的一點(diǎn)T,使得TA,TB與x軸所在的直線所成的銳角相等,若存在求出定點(diǎn)T的坐標(biāo),若不存在說明理由.
(1)由題意知:拋物線方程為:y2=4x且P(-1,0),
設(shè)A(x1,y1),B(x2,y2),
由已知直線l斜率存在,設(shè)l:y=k(x+1)(k≠0),代入y2=4x得,k2x2+(2k2-4)x+k2=0,
由△>0得-1<k<1,
x1+x2=-
2k2-4
k2
x1x2=1
,
|AB|=
1+k2
(x1+x2)2-4x1x2
,h=
|k|
1+k2
,
1
2
|AB|h
=
5
2
,得k=±
4
41
41
,滿足△>0,
(2)假設(shè)存在T(a,0)滿足題意,
因為TA,TB與x軸所在的直線所成的銳角相等,
所以直線TA,TB的斜率之和為0,則
kAT+kBT=
y1
x1-a
+
y2
x2-a
=
k(x1+1)(x2-a)+k(x2+1)(x1-a)
(x1-a)(x2-a)

=
k[2x1x2-(a-1)(x1+x2)-2a]
(x1-a)(x2-a)
=0,
∴k[2x1x2-(a-1)(x1+x2)-2a]=0,即k[2-(a-1)
4-2k2
k2
-2a]=0

整理得:a-1=0,解得a=1,
∴存在T(1,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧五中2010屆高三5月模擬(理) 題型:填空題

 已知拋物線和雙曲線都經(jīng)過點(diǎn),它們在軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐

    標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是                 .

 

查看答案和解析>>

同步練習(xí)冊答案