【題目】已知橢圓:的焦距為8,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形。
(1)求的方程;
(2)設(shè)為的左焦點(diǎn),為直線上任意一點(diǎn),過(guò)點(diǎn)作的垂線交于兩點(diǎn),.
(i)證明:平分線段(其中為坐標(biāo)原點(diǎn));
(ii)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo)。
【答案】(1);(2)見(jiàn)解析
【解析】
(1)由已知,根據(jù)橢圓的焦距為8,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的個(gè)端點(diǎn)構(gòu)成正三角形,求得的值,即可求得橢圓的方程;
(2)(。┰O(shè)點(diǎn)的坐標(biāo)為,驗(yàn)證當(dāng)時(shí),平分顯然成立;當(dāng)由直線的方程和橢圓的方程聯(lián)立方程組,求解中點(diǎn)的坐標(biāo),即可得到結(jié)論;
(ⅱ)由(ⅰ)可知,求得和,得到,利用基本不等式,即可求解.
(1)由已知,得. 因?yàn)?/span>,易解得.
所以,所求橢圓的標(biāo)準(zhǔn)方程為
(2)設(shè)點(diǎn)的坐標(biāo)為
當(dāng)時(shí),與軸垂直為的中點(diǎn)平分顯然成立
當(dāng)由已知可得:
則直線的方程為:
設(shè)
消去得:
,
中點(diǎn)的坐標(biāo)為
又在直線上.
綜上平分線段
當(dāng)時(shí),則
當(dāng)時(shí),由可知
/span>
(當(dāng)且僅當(dāng),即時(shí)等號(hào)成立),
∴點(diǎn)的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿足:對(duì)于其定義域內(nèi)的任何一個(gè)自變量,都有函數(shù)值,則稱函數(shù)在上封閉.
(1)若下列函數(shù):,的定義域?yàn)?/span>,試判斷其中哪些在上封閉,并說(shuō)明理由.
(2)若函數(shù)的定義域?yàn)?/span>,是否存在實(shí)數(shù),使得在其定義域上封閉?若存在,求出所有的值,并給出證明;若不存在,請(qǐng)說(shuō)明理由.
(3)已知函數(shù)在其定義域上封閉,且單調(diào)遞增,若且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.
(Ⅱ)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:+=1(a>b>0)的離心率為,橢圓上動(dòng)點(diǎn)P到一個(gè)焦點(diǎn)的距離的最小值為3(-1).
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 已知過(guò)點(diǎn)M(0,-1)的動(dòng)直線l與橢圓C交于A,B兩點(diǎn),試判斷以線段AB為直徑的圓是否恒過(guò)定點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次活動(dòng)中,有5名幸運(yùn)之星.這5名幸運(yùn)之星可獲得、兩種獎(jiǎng)品中的一種,并規(guī)定:每個(gè)人通過(guò)拋擲一枚質(zhì)地均為的骰子決定自己最終獲得哪一種獎(jiǎng)品(骰子的六個(gè)面上的點(diǎn)數(shù)分別為1點(diǎn)、2點(diǎn)、3點(diǎn)、4點(diǎn)、5點(diǎn)、6點(diǎn)),拋擲點(diǎn)數(shù)小于3的獲得獎(jiǎng)品,拋擲點(diǎn)數(shù)不小于3的獲得獎(jiǎng)品.
(1)求這5名幸運(yùn)之星中獲得獎(jiǎng)品的人數(shù)大于獲得獎(jiǎng)品的人數(shù)的概率;
(2)設(shè)、分別為獲得、兩種獎(jiǎng)品的人數(shù),并記,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】漁民出海打魚(yú),為了保證獲得的魚(yú)新鮮,魚(yú)被打上岸后,要在最短的時(shí)間內(nèi)將其分揀、冷藏,若不及時(shí)處理,打上來(lái)的魚(yú)很快地失去新鮮度(以魚(yú)肉內(nèi)的三甲胺量的多少來(lái)確定魚(yú)的新鮮度.三甲胺是一種揮發(fā)性堿性氨,是氨的衍生物,它是由細(xì)菌分解產(chǎn)生的.三甲胺量積聚就表明魚(yú)的新鮮度下降,魚(yú)體開(kāi)始變質(zhì)進(jìn)而腐。.已知某種魚(yú)失去的新鮮度與其出海后時(shí)間(分)滿足的函數(shù)關(guān)系式為.若出海后10分鐘,這種魚(yú)失去的新鮮度為10%,出海后20分鐘,這種魚(yú)失去的新鮮度為20%,那么若不及時(shí)處理,打上來(lái)的這種魚(yú)在多長(zhǎng)時(shí)間后開(kāi)始失去全部新鮮度(已知,結(jié)果取整數(shù))( )
A.33分鐘B.40分鐘C.43分鐘D.50分鐘
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長(zhǎng)軸長(zhǎng)為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com