已知在數(shù)列{an}中,a1=1,當(dāng)n≥2時,其前n項和Sn滿足
(Ⅰ) 求Sn的表達(dá)式;
(Ⅱ) 設(shè),求數(shù)列{bn}的前n項和Tn
【答案】分析:(Ⅰ)當(dāng)n≥2時,把a(bǔ)n=Sn-Sn-1代入即可得到2SnSn-1+Sn-Sn-1=0,然后化簡得,于是可以得到Sn的表達(dá)式,
(Ⅱ)把代入中可得bn=,然后進(jìn)行裂項相消進(jìn)行求和.
解答:解:(Ⅰ)當(dāng)n≥2時,an=Sn-Sn-1代入得:,
(6分)
(Ⅱ)
=.(13分)
點(diǎn)評:本題主要考查數(shù)列的求和和求數(shù)列遞推式的知識點(diǎn),利用裂項相消法求數(shù)列的和是解答本題第二問的關(guān)鍵,本題難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=1,當(dāng)n≥2時,其前n項和Sn滿足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表達(dá)式;
(Ⅱ) 設(shè)bn=
Sn
2n+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=7,an+1=
7anan+7
,計算這個數(shù)列的前4項,并猜想這個數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,an≠0,(n∈N*).求證:“{an}是常數(shù)列”的充要條件是“{an}既是等差數(shù)列又是等比數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•河北區(qū)一模)已知在數(shù)列{an}中,Sn是前n項和,滿足Sn+an=n,(n=1,2,3,…).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=
1
2
,Sn是其前n項和,且Sn=n2an-n(n-1).
(1)證明:數(shù)列{
n+1
n
Sn}
是等差數(shù)列;
(2)令bn=(n+1)(1-an),記數(shù)列{bn}的前n項和為Tn
①求證:當(dāng)n≥2時,Tn2>2(
T2
2
+
T3
3
+…+
Tn
n
)
;
②)求證:當(dāng)n≥2時,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

查看答案和解析>>

同步練習(xí)冊答案