分析 (1)由Sn2-(n2+n-1)Sn-(n2+n)=0,因式分解求得:[Sn-(n2+n)](Sn+1)=0,an>0,Sn>0,因此Sn=n2+n,當(dāng)n≥2時(shí),Sn-1=(n-1)2+(n-1)=n2-n,an=Sn-Sn-1=(n2+n)-(n2-n)=2n,當(dāng)n=1時(shí),a1=S1=2,成立,數(shù)列{an}的通項(xiàng)公式an=2n;
(2)由bn=$\frac{1}{{(n+2){a_n}}}$=$\frac{1}{2n(n+2)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),采用“裂項(xiàng)法”求得Tn=$\frac{3}{8}$-$\frac{1}{4}$($\frac{1}{n+1}$-$\frac{1}{n+2}$),因此Tn<$\frac{3}{8}$.
解答 解:(1)解:由Sn2-(n2+n-1)Sn-(n2+n)=0,
整理得:[Sn-(n2+n)](Sn+1)=0,
由an>0,
∴Sn>0,則Sn=n2+n,
∴當(dāng)n=1時(shí),a1=S1=2,
當(dāng)n≥2時(shí),Sn-1=(n-1)2+(n-1)=n2-n,
∴an=Sn-Sn-1=(n2+n)-(n2-n)=2n,
當(dāng)n=1時(shí),成立,
綜上,數(shù)列{an}的通項(xiàng):an=2n,
數(shù)列{an}的通項(xiàng)公式an=2n;
(2)證明:bn=$\frac{1}{{(n+2){a_n}}}$=$\frac{1}{2n(n+2)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),
數(shù)列{bn}的前n項(xiàng)和為T(mén)n,Tn=b1+b2+b3+…+bn,
=$\frac{1}{4}$(1-$\frac{1}{3}$)+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{4}$)+$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{4}$($\frac{1}{n-1}$-$\frac{1}{n+1}$)+$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),
=$\frac{1}{4}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$),
=$\frac{3}{8}$-$\frac{1}{4}$($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴${T_n}=\frac{3}{8}-\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})<\frac{3}{8}$.
點(diǎn)評(píng) 本題考查數(shù)列通項(xiàng)公式的求法,考查“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和,數(shù)列與不等式的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | ±$\frac{1}{7}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | ±$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{21}{13}$ | B. | $\frac{13}{8}$ | C. | $\frac{34}{21}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 非奇非偶函數(shù) | D. | 奇偶性與k的值有關(guān) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com