函數(shù)f(x)=ax-3(a>0且a≠1)的圖象必過定點P,則P點坐標為________.

(0,-2)
分析:利用a0=1(a≠0),取x=0,得f(0)=-2,即可求函數(shù)f(x)的圖象所過的定點.
解答:當x=0時,f(0)=a0-3=-2,∴函數(shù)f(x)=ax-3的圖象一定經(jīng)過定點(0,-2).
故答案為:(0,-2).
點評:本題考查了含有參數(shù)的函數(shù)過定點的問題,自變量的取值使函數(shù)值不含參數(shù)即可求出其定點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+
bx
+c(a>0)的圖象在點(1,f(1))處的切線方程為y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a≠0,函數(shù)f(x)=ax(x-2)2(x∈R)
(Ⅰ)若函數(shù)f(x)有極大值32,求實數(shù)a的值;
(Ⅱ)若對于x∈[-2,1],不等式f(x)<
329
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax(a>0且a≠1)在[-1,1]上的最大值與最小值之和為
10
3
,則a的值為
3或
1
3
3或
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+b,其中f(0)=-2,f(2)=0,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)(注:本題第(2)(3)兩問只需要解答一問,兩問都答只計第(2)問得分)
已知函數(shù)f(x)=ax+xln|x+b|是奇函數(shù),且圖象在點(e,f(e))處的切線斜率為3(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a、b的值;
(2)若k∈Z,且k<
f(x)x-1
對任意x>1恒成立,求k的最大值;
(3)當m>n>1(m,n∈Z)時,證明:(nmmn>(mnnm

查看答案和解析>>

同步練習冊答案