【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個(gè)單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱

【答案】C
【解析】解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,∴ =π,∴ω=2.

把其圖象向左平移 個(gè)單位后得到函數(shù)g(x)=cosωx=sin(2x+ +φ)的圖象,

+φ=kπ+ ,k∈Z,∴φ=﹣ ,∴f(x)=sin(2x﹣ ).

由于當(dāng)x= 時(shí),函數(shù)f(x)=0,故A不滿足條件,而C滿足條件;

令x= ,求得函數(shù)f(x)=sin = ,故B、D不滿足條件,

故選:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣3|+ax﹣6(a是常數(shù),a∈R). (Ⅰ)當(dāng)a=1時(shí),求不等式f(x)≥0的解集;
(Ⅱ)當(dāng)x∈[﹣1,1]時(shí),不等式f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足:an+1+(﹣1)nan=n+2(n∈N*),則S20=(
A.130
B.135
C.260
D.270

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組抽出的號(hào)碼為28,則第8組抽出的號(hào)碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于(
A.46
B.45
C.70
D.69

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實(shí)數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的三個(gè)內(nèi)角為A、B、C,若 ,則sin2B+2cosC的最大值為(
A.
B.1
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過(guò)點(diǎn)(1, ),F(xiàn)1 , F2是橢圓的左、右焦點(diǎn).
(1)求橢圓C的方程;
(2)點(diǎn)P在橢圓上運(yùn)動(dòng),求|PF1||PF2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}前n項(xiàng)和為Sn , 且滿足a2=2,S5=15;等比數(shù)列{bn}滿足b2=4,b5=32.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案