(2001•江西)設(shè)A={x|x2-x=0},B={x|x2+x=0},則A∩B等于( 。
A.0B.{0}C.∅D.{-1,0,1}
∵A={x|x2-x=0}={0,1},B={x|x2+x=0}={0,-1},則A∩B={0 },
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2001•江西)設(shè)A={x|x2-x=0},B={x|x2+x=0},則A∩B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2001•江西)設(shè)0<θ<
π2
,曲線x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1有4個不同的交點.
(Ⅰ)求θ的取值范圍;
(Ⅱ)證明這4個交點共圓,并求圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()(2001高考江西、山西、天津)設(shè)坐標原點為O,拋物線y2=2x與過焦點的直線交于A、B兩點,則等于(    )A.  B.-  C.3   D.-3

查看答案和解析>>

同步練習冊答案