分析 由三角函數(shù)公式化簡可得f(x)=$\frac{2\sqrt{3}}{3}$sin(2x-$\frac{π}{3}$),由三角函數(shù)的最值可得.
解答 解:變形可得f(x)=$\frac{1}{\sqrt{3}}$sin2x-cos2x
=$\frac{2}{\sqrt{3}}$($\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x)
=$\frac{2}{\sqrt{3}}$(sin2xcos$\frac{π}{3}$-cos2xsin$\frac{π}{3}$)
=$\frac{2\sqrt{3}}{3}$sin(2x-$\frac{π}{3}$),
∴當2x-$\frac{π}{3}$=2kπ+$\frac{π}{2}$即x=kπ+$\frac{5π}{12}$時,函數(shù)取最大$\frac{2\sqrt{3}}{3}$,
故答案為:kπ+$\frac{5π}{12}$,k∈Z.
點評 本題考查三角函數(shù)的最值,由三角函數(shù)公式化為一角一函數(shù)是解決問題的關鍵,屬基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $5\sqrt{2}$ | C. | 6 | D. | 50 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | ($\frac{5}{2}$,+∞) | C. | (2,$\frac{5}{2}$) | D. | (-∞,2)∪($\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1,2 | B. | -1,-2 | C. | 1,$\frac{1}{2}$ | D. | -1,-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com