如果數(shù)列滿足:且,則稱數(shù)列為階“歸化數(shù)列”.
(1)若某4階“歸化數(shù)列”是等比數(shù)列,寫(xiě)出該數(shù)列的各項(xiàng);
(2)若某11階“歸化數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)若為n階“歸化數(shù)列”,求證:.
(1)或;(2)或;(3)證明見(jiàn)解析.
解析試題分析:(1)等比數(shù)列是4階“歸化數(shù)列”,則有,這樣,于是,從而,,以后各項(xiàng)依次可寫(xiě)出;(2)等差數(shù)列是11階“歸化數(shù)列”,則,,這樣有,知當(dāng)時(shí),,當(dāng)時(shí),,由此可得的通項(xiàng)公式分別為或;(3)對(duì)階“歸化數(shù)列”,從已知上我們只能知道在中有正有負(fù),因此為了求,我們可以設(shè)是正的,是負(fù)的,這樣,,
證畢.
(1)設(shè)成公比為的等比數(shù)列,顯然,則由,
得,解得,由得,解得,
所以數(shù)列或為所求四階“歸化數(shù)列”; 4分
(2)設(shè)等差數(shù)列的公差為,由,
所以,所以,即, 6分
當(dāng)時(shí),與歸化數(shù)列的條件相矛盾,
當(dāng)時(shí),由,所以,
所以 8分
當(dāng)時(shí),由,所以,
所以(n∈N*,n≤11),
所以(n∈N*,n≤11), 10分
(3)由已知可知,必有ai>0,也必有aj<0(i,j∈{1,2, ,n,且i≠j).
設(shè)為諸ai中所有大于0的數(shù),為諸ai中所有小于0的數(shù).
由已知得X=++…+=,Y=+
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且滿足.
(1)求,,,的值并寫(xiě)出其通項(xiàng)公式;(2)證明數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的兩個(gè)同心圓盤(pán)均被等分(且),在相重疊的扇形格中依次同時(shí)填上,內(nèi)圓盤(pán)可繞圓心旋轉(zhuǎn),每次可旋轉(zhuǎn)一個(gè)扇形格,當(dāng)內(nèi)圓盤(pán)旋轉(zhuǎn)到某一位置時(shí),定義所有重疊扇形格中兩數(shù)之積的和為此位置的“旋轉(zhuǎn)和”.
(1)求個(gè)不同位置的“旋轉(zhuǎn)和”的和;
(2)當(dāng)為偶數(shù)時(shí),求個(gè)不同位置的“旋轉(zhuǎn)和”的最小值;
(3)設(shè),在如圖所示的初始位置將任意對(duì)重疊的扇形格中的兩數(shù)均改寫(xiě)為0,證明:當(dāng)時(shí),通過(guò)旋轉(zhuǎn),總存在一個(gè)位置,任意重疊的扇形格中兩數(shù)不同時(shí)為0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的首項(xiàng),
求數(shù)列的通項(xiàng)公式;
設(shè)的前項(xiàng)和為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足 ()且
(1)求的值
(2)求的通項(xiàng)公式
(3)令,求的最小值及此時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)等差數(shù)列的公差為d,若數(shù)列為遞減數(shù)列,則( ).
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com