已知集合A={x||x-1|<2},集合B={x|2x>4},則A∩B=_
(2,3)
(2,3)
分析:解絕對值不等式可以求出集合A,解指數(shù)不等式可以求出集合B,進(jìn)而根據(jù)集合交集及其運(yùn)算,求出A∩B
解答:解:∵集合A={x||x-1|<2}=(-1,3),
集合B={x|2x>4}=(2,+∞),
故A∩B=(2,3)
故答案為:(2,3)
點(diǎn)評:本題考查的知識(shí)點(diǎn)是絕對值不等式的解法,指數(shù)不等式的解法,集合的交集及其運(yùn)算,其中解不等式求出集合A,B是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實(shí)數(shù)a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案