設(shè)
3
sinx-cosx=2sin(x+θ),其中0<θ<2π,則θ的值為
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專(zhuān)題:三角函數(shù)的求值
分析:利用兩角和公式對(duì)等號(hào)左邊進(jìn)行化簡(jiǎn),進(jìn)而根據(jù)誘導(dǎo)公式求得θ的集合,最后根據(jù)θ的范圍求得θ.
解答: 解:
3
sinx-cosx=2(
3
2
sinx-
1
2
cosx)=2sin(x-
π
6
)=2sin(x+θ),
∴θ=2kπ-
π
6
,k∈Z,
∵0<θ<2π,
∴θ=
11π
6

故答案為:
11π
6
點(diǎn)評(píng):本題主要考查了三角函數(shù)恒等變換的應(yīng)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l的方程為
.
1    0     2
x    2     3
y   -1   2
.
=0,則直線(xiàn)l的一個(gè)法向量是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等比數(shù)列,公比為q,且
lim
n→∞
(a2+a3+…+an)=2,則首項(xiàng)a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
9
+
y2
5
=1上任意一點(diǎn)P,A1,A2是橢圓的左、右頂點(diǎn),設(shè)直線(xiàn)PA1,PA2斜率分別為k PA1,k PA2,則k PA1•k PA2=
 
,現(xiàn)類(lèi)比上述求解方法,可以得出以下命題:已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1上任意一點(diǎn)P,A1,A2是雙曲線(xiàn)的左、右頂點(diǎn),設(shè)直線(xiàn)PA1,PA2斜率分別為k PA1,k PA2,則k PA1•k PA2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正四面體PABC中,若E,F(xiàn)分別是PC,AB的中點(diǎn),則異面直線(xiàn)PF與BE所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)定義在(-π,0)∪(0,π)上,其導(dǎo)函數(shù)為f′(x),且f(
π
2
)=0,當(dāng)0<x<π時(shí),f′(x)sinx-f(x)cosx<0,則關(guān)于x的不等式f(x)<2f(
π
6
)sinx的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
x3+ax
有三個(gè)單調(diào)區(qū)間,則a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
4
3
an-
2
3
(n∈N+),則a1=
 
,an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)子區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱(chēng)x0是f(x)的一個(gè)“開(kāi)心點(diǎn)”,也稱(chēng)f(x)在區(qū)間D上存在開(kāi)心點(diǎn).若函數(shù)f(x)=ax2-2x-2a-
3
2
在區(qū)間[-3,-
3
2
]上存在開(kāi)心點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,0)
B、[-
1
4
,0]
C、[-
3
14
,0]
D、[-
3
14
,-
1
4
]

查看答案和解析>>

同步練習(xí)冊(cè)答案