已知點(diǎn)P是雙曲線上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),c為半焦距,△PF1F2的內(nèi)切圓與F1F2切于點(diǎn)M,則|F1M|•|F2M|=   
【答案】分析:根據(jù)圖象和圓切線長(zhǎng)定理可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|后根據(jù)雙曲線的定義分P在圖象的右支和左支可得
|F1M|-|F2M|=±2a,與|F1M|+|MF2|=|F1F2|=2c聯(lián)立即可求出|F1M|和|MF2|,|F1M|與|F2M|的積再根據(jù)雙曲線的基本性質(zhì)c2-a2=b2化簡(jiǎn)得到值.
解答:解:根據(jù)從圓外一點(diǎn)向圓所引的兩條切線長(zhǎng)相等可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|
①當(dāng)P在雙曲線圖象的右支時(shí),而根據(jù)雙曲線的定義可知
|F1M|-|F2M|=|F1P|-|F2P|=2a①;
而|F1M|+|MF2|=|F1F2|=2c②,
聯(lián)立①②解得:|F1M|=a+c,|F2M|=c-a,所以|F1M|•|F2M|=(a+c)(c-a)=c2-a2=b2;
②當(dāng)P在雙曲線圖象的左支時(shí),而根據(jù)雙曲線的定義可知
|F2M|-|F1M|=|F2P|-|F1P|=2a③;
而|F1M|+|MF2|=|F1F2|=2c④,
聯(lián)立③④解得:|F2M|=a+c,|F1M|=c-a,|F1M|•|F2M|=(a+c)(c-a)=c2-a2=b2
綜上,可得|F1M|•|F2M|=b2
故答案為:b2
點(diǎn)評(píng):考查學(xué)生掌握雙曲線的基本性質(zhì),靈活運(yùn)用圓切線長(zhǎng)定理化簡(jiǎn)求值.做題時(shí)注意利用分類討論的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:福建省永安一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:022

已知點(diǎn)P是雙曲線上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),c為半焦距,△PF1F2的內(nèi)切圓與F1F2切于點(diǎn)M,則|F1M|·|F2M|=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知點(diǎn)P是雙曲線數(shù)學(xué)公式上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),c為半焦距,△PF1F2的內(nèi)切圓與F1F2切于點(diǎn)M,則|F1M|•|F2M|=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P是雙曲線上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),c為半焦距,△PF1F2的內(nèi)切圓與F1F2切于點(diǎn)M,則|F1M|•|F2M|=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P是雙曲線上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),c為半焦距,△PF1F2的內(nèi)切圓與F1F2切于點(diǎn)M,則|F1M|•|F2M|=   

查看答案和解析>>

同步練習(xí)冊(cè)答案