精英家教網(wǎng)如圖,已知中心在原點(diǎn)O、焦點(diǎn)在x軸上的橢圓C的離心率為
3
2
,點(diǎn)A、B分別是橢圓C的長(zhǎng)軸、短軸的端點(diǎn),點(diǎn)O到直線(xiàn)AB的距離為
6
5
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),滿(mǎn)足EP⊥EQ,求
EP
QP
的最小值.
分析:(Ⅰ)先利用離心率為
3
2
得到關(guān)于a,b,c之間的關(guān)系,再結(jié)合點(diǎn)O到直線(xiàn)AB的距離為
6
5
5
,即可求出a,b,c,進(jìn)而得到橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)先利用EP⊥EQ把所求問(wèn)題轉(zhuǎn)化為
EP
2
,再利用點(diǎn)P在拋物線(xiàn)上,利用拋物線(xiàn)上的點(diǎn)的范圍限制即可求出
EP
QP
的取值范圍.
解答:解:(Ⅰ)由離心率 e=
c
a
=
3
2
,得
b
a
=
1-e2
=
1
2
∴a=2b①
∵原點(diǎn)O到直線(xiàn)AB的距離為
6
5
5

ab
a2+b2
=
6
5
5
②,
將①代入②,得b2=9,∴a2=36
則橢圓C的標(biāo)準(zhǔn)方程為
x2
36
+
y2
9
=1

(Ⅱ)因?yàn)镋P⊥EQ∴
EP
EQ
=0

EP
QP
=
EP
•(
EP
-
EQ
)=
EP
2

設(shè)P(x,y),則
x2
36
+
y2
9
=1
,即 y2=9-
x2
4

EP
QP
=
EP
2
=(x-3)2+y2=x2-6x+9+9-
x2
4
=
3
4
(x-4)2+6

∵-6≤x≤6,∴6≤
3
4
(x-4)2+6≤81

EP
QP
的最小值為:6.
點(diǎn)評(píng):本題主要考查直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.解決第一問(wèn)的關(guān)鍵是利用條件列出關(guān)于a,b,c之間的方程.第二問(wèn)重點(diǎn)是數(shù)量積的應(yīng)用,二次函數(shù)的最值的應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知中心在原點(diǎn)且焦點(diǎn)在x軸上的橢圓E經(jīng)過(guò)點(diǎn)A(3,1),離心率e=
6
3

(1)求橢圓E的方程;
(2)過(guò)點(diǎn)A且斜率為1的直線(xiàn)交橢圓E于A(yíng)、C兩點(diǎn),過(guò)原點(diǎn)O與AC垂直的直線(xiàn)交橢圓E于B、D兩點(diǎn),求證A、B、C、D四點(diǎn)在同一個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知中心在原點(diǎn)0、焦點(diǎn)在x軸上的橢圓T過(guò)點(diǎn)M(2,1),離心率為
3
2
;拋物線(xiàn)C頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為x軸且過(guò)點(diǎn)M.
(Ⅰ)當(dāng)直線(xiàn)l0經(jīng)過(guò)橢圓T的左焦點(diǎn)且平行于OM時(shí),求直線(xiàn)l0的方程;(Ⅱ)若斜率為-
1
4
的直線(xiàn)l不過(guò)點(diǎn)M,與拋物線(xiàn)C交于A(yíng)、B兩個(gè)不同的點(diǎn),求證:直線(xiàn)MA,MB與X軸總圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知中心在原點(diǎn)O、焦點(diǎn)在x軸上的橢圓C的離心率為,點(diǎn)AB分別是橢圓C的長(zhǎng)軸、短軸的端點(diǎn),點(diǎn)O到直線(xiàn)AB的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)E(3,0),設(shè)點(diǎn)PQ是橢圓C上的兩個(gè)動(dòng)點(diǎn),滿(mǎn)足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆四川省綿陽(yáng)市高二上學(xué)期期末教學(xué)質(zhì)量測(cè)試數(shù)學(xué)試題 題型:解答題

如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓經(jīng)過(guò)點(diǎn)(,),且它的左焦點(diǎn)F1將長(zhǎng)軸分成2∶1,F(xiàn)2是橢圓的右焦點(diǎn).

    (1)求橢圓的標(biāo)準(zhǔn)方程;

    (2)設(shè)P是橢圓上不同于左右頂點(diǎn)的動(dòng)點(diǎn),延長(zhǎng)F1P至Q,使Q、F2關(guān)于∠F1PF2的外角平分線(xiàn)l對(duì)稱(chēng),求F2Q與l的交點(diǎn)M的軌跡方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案