8.已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入3萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$.
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得的年利潤最大?
(注:年利潤=年銷售收入-年總成本)

分析 (1)由年利潤W=年產(chǎn)量x×每千件的銷售收入為R(x)-成本,又由R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$,且年固定成本為10萬元,每生產(chǎn)1千件需另投入3萬元.我們易得年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)由(1)的解析式,我們求出各段上的最大值,即利潤的最大值,然后根據(jù)分段函數(shù)的最大值是各段上最大值的最大者,即可得到結(jié)果.

解答 解:(1)當0<x≤10時,
$W=xR(x)-(10+3x)=x(9.4-\frac{1}{30}{x^2})-10-3x=6.4x-\frac{x^3}{30}-10$;
當x>10時,$W=xR(x)-(10+3x)=x(\frac{110}{x}-\frac{432}{x^2})-10-3x=100-3(x+\frac{144}{x})$.
所以W=$\left\{\begin{array}{l}{6.4x-\frac{{x}^{3}}{30}-10,x∈(0,10]}\\{100-3(x+\frac{144}{x}),x∈(10,+∞)}\end{array}\right.$;
(2)①當0<x<10時,由W'=6.4-$\frac{{x}^{2}}{10}$=0,得x=8,
且當x∈(0,8)時,W'>0;當x∈(8,10)時,W'<0,
∴當x=8時,W取最大值,且Wmax=6.4×8-$\frac{{8}^{3}}{30}$-10≈24.
②當x>10時,W=100-3(x+$\frac{144}{x}$)≤100-3×2$\sqrt{x•\frac{144}{x}}$=100-72=28.
當且僅當x=$\frac{144}{x}$,即x=12時,W=28,
故當x=12時,W取最大值28.
綜合①②知當x=12時,W取最大值28萬元,
故當年產(chǎn)量為12千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大.

點評 本題考查的知識點是分段函數(shù)及函數(shù)的最值,分段函數(shù)分段處理,這是研究分段函數(shù)圖象和性質(zhì)最核心的理念,具體做法是:分段函數(shù)的定義域、值域是各段上x、y取值范圍的并集,分段函數(shù)的奇偶性、單調(diào)性要在各段上分別論證;分段函數(shù)的最大值,是各段上最大值中的最大者.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+|x+1-a|,其中a為實常數(shù).
(Ⅰ)若a=1,判斷f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的單調(diào)性;
(Ⅱ)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=|2x-4|+1.
(1)畫出函數(shù)y=f(x)的圖象.
(2)若對任意x∈R,f(x)≥a2-3a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=$\sqrt{2}sin({x-{{45}°}})-sinx$( 。
A.是奇函數(shù)但不是偶函數(shù)B.是偶函數(shù)但不是奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦點為$(\sqrt{2},0)$,且經(jīng)過點$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,過橢圓的左頂點A作直線l⊥x軸,點M為直線l上的動點(點M與點A不重合),點B為橢圓右頂點,直線BM交橢圓C于點P.
(1)求橢圓C的方程;
(2)求證:AP⊥OM;
(3)試問$\overrightarrow{OP}•\overrightarrow{OM}$是否為定值?若是定值,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)是定義在R上的奇函數(shù),f(2)=0,當x>0時,有xf′(x)-f(x)<0恒成立,則xf(x)>0的解集為(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在三棱錐中A-BCD,A(0,0,2),B(4,4,0),C(4,0,0),D(0,4,3),若下列網(wǎng)格紙上小正方形的邊長為1,則三棱錐A-BCD的三視圖不可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率為$\frac{{2\sqrt{5}}}{5}$,過點F2且與x軸垂直的直線被橢圓截得的線段長為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)設(shè)過點F2的直線l與橢圓相交于A,B兩點,若M(-6,0),求當三角形MAB的面積S最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+2)-x2+mx+n在點x=1處的切線與直線3x+7y+1=0垂直,且f(-1)=0;
(1)求實數(shù)m和n的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案