【題目】設橢圓: ()的左右焦點分別為, ,下頂點為,直線的方程為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設為橢圓上異于其頂點的一點, 到直線的距離為,且三角形的面積為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓相切,過焦點, 分別作, ,垂足分別為, ,求的最大值.
【答案】(1)(2)4
【解析】試題分析:(Ⅰ) 由直線斜率為 可得 ,從而可得結(jié)果;(Ⅱ)(1)先求得 點坐標,根據(jù)三角形面積可得 的值,從而可得橢圓方程,(2) 設直線: 代入橢圓的方程中,
得 ,判別式為零,及點到直線的距離公式可將表示為 的函數(shù),再利用基本不等式求解即可.
試題解析:(Ⅰ)由已知,則.
,
(Ⅱ)(1)設點,于是,
所以或
而 無解;
由得.
又因為三角形面積,所以,
于是,橢圓的方程為.
(2)設直線: 代入橢圓的方程中,
得
由已知,即
同時,
①當時,
所以
當且僅當時等號成立
而時, ,因此
②當時,四邊形為矩形
此時
綜上①②可知, 的最大值為4.
【方法點晴】本題主要考查待定系數(shù)法求橢圓方程和最值問題,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)法以及均值不等式法,本題(Ⅱ)就是用的這種思路,利用均值不等式法的最大值的.
科目:高中數(shù)學 來源: 題型:
【題目】設兩個非零向量 和 不共線.
(1)如果 = + , =2 +8 , =3 ﹣3 ,求證:A、B、D三點共線;
(2)若| |=2,| |=3, 與 的夾角為60°,是否存在實數(shù)m,使得m + 與 ﹣ 垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.
(1)求橢圓的方程;
(2)若直線與直線交于點,線段的中點為,證明:點關于直線的對稱點在直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(2x﹣ ),x∈R.
(1)在給定的平面直角坐標系中,畫函數(shù)f(x)=2sin(2x﹣ ),x∈[0,π]的簡圖;
(2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的單調(diào)增區(qū)間;
(3)函數(shù)g(x)=2cos2x的圖象只經(jīng)過怎樣的平移變換就可得到f(x)=2sin(2x﹣ ),x∈R的圖象?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值;
(2)當a=3,b=-9時,若函數(shù)f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于維向量,若對任意均有或,則稱為維向量. 對于兩個維向量定義.
(1)若, 求的值;
(2)現(xiàn)有一個維向量序列: 若且滿足: ,求證:該序列中不存在維向量.
(3) 現(xiàn)有一個維向量序列: 若且滿足: ,若存在正整數(shù)使得為維向量序列中的項,求出所有的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,橢圓 的離心率為是橢圓的右焦點,直線的斜率為為坐標原點.
(1)求的方程;
(2)設過點的動直線與相交于兩點,當的面積最大時,求的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com