如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),B,C分別為橢圓的上、下頂點(diǎn),直線BF2與橢圓的另一個(gè)交點(diǎn)為D,若cos∠F1BF2=
7
25
,則直線CD的斜率為______.
cos∠F1BF2=
7
25

∴2cos2∠OBF1-1=
7
25

cos∠OBF1=
4
5
b
a
=
4
5

e=
3
5
=
c
a

-
b2
a2
=kBDkCD=-
b
c
kCD
,
kCD=
bc
a2
,
kCD=
bc
a2
=
12
25

故答案為:
12
25
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,過其右焦點(diǎn)做斜率不為0的直線l與橢圓交于A,B兩點(diǎn),設(shè)在A,B兩點(diǎn)處的切線交于點(diǎn)M(x0,y0),則M點(diǎn)的橫坐標(biāo)x0的取值范圍是( 。
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓E:
x2
a2
+y2=1
的焦點(diǎn)在x軸上,且長軸長為短軸長的2倍,則它的離心率為( 。
A.
1
2
B.
2
3
C.
3
2
D.
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如下圖,橢圓中心為O,F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線l交OA延長線于B,P,Q在橢圓上且PD⊥l于D,QF⊥OA于F,則以下比值①
|PF|
|PD|
|QF|
|BF|
|AO|
|BO|
|AF|
|BA|
|FO|
|AO|
能作為橢圓的離心率的是______(填寫所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P是橢圓
x2
16
+
y2
12
=1(y≠0)
上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),O是坐標(biāo)原點(diǎn),若M是∠F1PF2平分線上的一點(diǎn),且F1M⊥MP,則OM的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
4
+
y2
3
=1
內(nèi)有一點(diǎn)P(1,-1),F(xiàn)為橢圓的右焦點(diǎn),在橢圓上有一動(dòng)點(diǎn)M,則|MP|+|MF|的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F(xiàn)2為橢圓
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),A,B為過F1的直線與橢圓的兩個(gè)交點(diǎn),則△AF1F2的周長為______△ABF2周長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn).
(1)設(shè)橢圓C上的點(diǎn)A(1,
3
2
)
到兩焦點(diǎn)的距離之和為4,求橢圓C的方程;
(2)設(shè)P是(1)中橢圓上的一點(diǎn),∠F1PF2=60°求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知橢圓
x2
4
+
y2
3
=1的左焦點(diǎn)為F,直線x-y-1=0,x-y+1=0與橢圓分別相交于點(diǎn)A,B,C,D,則AF+BF+CF+DF=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案