已知函數(shù).
(1)確定函數(shù)的單調(diào)區(qū)間,并指出其單調(diào)性;
(2)求函數(shù)的圖象在點(diǎn)x=1處的切線與兩坐標(biāo)軸所圍成的三角形的面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
4 |
1-m•2x |
1+m•2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2+2x+1 |
x2+1 |
A、2 | ||
B、
| ||
C、1 | ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù)f(x),在使f(x)≤M恒成立的所有常數(shù)M中,我們把M中的最小值稱為函數(shù)f(x)的“上確界”.已知函數(shù)f(x)=+a(x∈[-2,2])是奇函數(shù),則f(x)的上確界為( )
A.2 B.
C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江寧波四校高二下學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù), 其中.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求曲線的單調(diào)區(qū)間與極值.
【解析】第一問(wèn)中利用當(dāng)時(shí),,
,得到切線方程
第二問(wèn)中,
對(duì)a分情況討論,確定單調(diào)性和極值問(wèn)題。
解: (1) 當(dāng)時(shí),,
………………………….2分
切線方程為: …………………………..5分
(2)
…….7分
分類: 當(dāng)時(shí), 很顯然
的單調(diào)增區(qū)間為: 單調(diào)減區(qū)間: ,
, ………… 11分
當(dāng)時(shí)的單調(diào)減區(qū)間: 單調(diào)增區(qū)間: ,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:臺(tái)州一模 題型:單選題
x2+2x+1 |
x2+1 |
A.2 | B.
| C.1 | D.
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com