已知p和q是兩個(gè)不相等的正整數(shù),且q≥2,則
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=( 。
A.0B.1C.
p
q
D.
p-1
q-1
解析:法一特殊值法,由題意取p=1,q=2,
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=
lim
n→∞
1
n
1
n2
+
2
n
=
lim
n→∞
n
1+2n
=
1
2
=
p
q
,可見應(yīng)選C
法二∵1+(1+x)+(1+x)2++(1+x)m-1=
1-(1+x)m
1-(1+x)

∴(1+x)m-1=x[1+(1+x)+(1+x)2+(1+x)m-1]
x=
1
n
,m分別取p和q,則原式化為
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=
lim
n→∞
1
n
[1+(1+
1
n
)+(1+
1
n
)
2
+(1+
1
n
)
p-1
]
1
n
[1+(1+
1
n
)+(1+
1
n
)
2
+(1+
1
n
)
q-1
]

lim
n→∞
(1+
1
n
)=1,
lim
n→∞
(1+
1
n
)2=1,,
lim
n→∞
(1+
1
n
)p-1=1
,
所以原式=
1+1++1
1+1++1
=
p
q
(分子、分母1的個(gè)數(shù)分別為p個(gè)、q個(gè))
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p和q是兩個(gè)不相等的正整數(shù),且q≥2,則
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=( 。
A、0
B、1
C、
p
q
D、
p-1
q-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河北省石家莊二中高三(下)段考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知p和q是兩個(gè)不相等的正整數(shù),且q≥2,則=( )
A.0
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年湖北省高考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知p和q是兩個(gè)不相等的正整數(shù),且q≥2,則=( )
A.0
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)26:數(shù)學(xué)歸納法(解析版) 題型:選擇題

已知p和q是兩個(gè)不相等的正整數(shù),且q≥2,則=( )
A.0
B.1
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案