雙曲線=8的漸近線方程是            .

答案:
解析:

yx


提示:

把原方程化為標(biāo)準(zhǔn)方程,得=1

由此可得a=4,b=3,焦點(diǎn)在x軸上,

所以漸近線方程為yx,即yx.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)恰好是橢圓
x2
25
+
y2
16
=1的長(zhǎng)軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程是
4x±3y=0
4x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•海淀區(qū)一模)已知雙曲線C的方程是
x2
4
-
y2
9
=1
,給出下列四個(gè)命題( 。
(1)雙曲線C的漸近線方程是y=±
3
2
x
;
(2)雙曲線C的準(zhǔn)線方程是x=±
4
13

(3)雙曲線C的離心率是
13
2
;
(4)雙曲線C與直線y=
2
3
x
有兩個(gè)交點(diǎn)
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1的漸近線方程是y=±
3
3
x,且它的一條準(zhǔn)線與漸近線y=
3
3
x及x軸圍成的三角形的周長(zhǎng)是
3
2
(1+
3
)
.以C1的兩個(gè)頂點(diǎn)為焦點(diǎn),以C1的焦點(diǎn)為頂點(diǎn)的橢圓記為C2
(1)求C2的方程;
(2)已知斜率為
1
2
的直線l經(jīng)過(guò)定點(diǎn)P(m,0)(m>0)并與橢圓C2交于不同的兩點(diǎn)A、B,若對(duì)于橢圓C2上任意一點(diǎn)M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

雙曲線=8的漸近線方程是            .

查看答案和解析>>

同步練習(xí)冊(cè)答案