1.已知△ABC的內(nèi)角A,B,C對的邊分別為a,b,c,sinA+$\sqrt{2}$sinB=2sinC,b=2,則當(dāng)cosC取得最小值時,a=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 已知等式利用正弦定理化簡,得到關(guān)系式,利用余弦定理表示出cosC,把得出關(guān)系式整理后代入,利用基本不等式求出cosC的最小值即可..

解答 解:△ABC中,∵sinA+$\sqrt{2}$sinB=2sinC,∴a+$\sqrt{2}$b=2c,
兩邊平方得:(a+$\sqrt{2}$b)2=4c2,即a2+2$\sqrt{2}$ab+2b2=4c2,
即a2+b2-c2=3c2-b2-2$\sqrt{2}$ab=3•${(\frac{a+\sqrt{2}b}{2})}^{2}$-b2-2$\sqrt{2}$ab=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{4}$,
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{8ab}$=$\frac{3}{8}•\frac{a}$+$\frac{1}{4}•\frac{a}$-$\frac{\sqrt{2}}{4}$≥2$\sqrt{\frac{3a}{8b}•\frac{4a}}$-$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
當(dāng)且僅當(dāng)$\frac{3a}{8b}$=$\frac{4a}$,即當(dāng)a=$\frac{2\sqrt{6}}{3}$,b=2時,cosC 取得最小值為$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案為:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

點(diǎn)評 此題考查了正弦、余弦定理,以及基本不等式的運(yùn)用,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.log43、log34、log${\;}_{\frac{4}{3}}$$\frac{3}{4}$的大小順序是( 。
A.log34<log43<log${\;}_{\frac{4}{3}}$$\frac{3}{4}$B.log34>log43>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$
C.log34>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log43D.log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log34>log43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={y|y=2x,x∈R},B={y|y=x2,x∈R},則(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直三棱柱ABC-A1B1C1中,若BC⊥AC,$∠A=\frac{π}{3}$,AC=4,AA1=4,M為AA1的中點(diǎn),P為BM的中點(diǎn),Q在線段CA1上,A1Q=3QC.則異面直線PQ與AC所成角的正弦值為(  )
A.$\frac{{\sqrt{39}}}{13}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}滿足a3=3,a5=9;數(shù)列{bn}的前n項和為Sn,且滿足$_{1}=1,_{2}=3,{S}_{n+1}=4{S}_{n}-3{S}_{n-1}(n≥2,n∈{N}^{*})$.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若對任意的$n∈{N}^{*},({S}_{n}+\frac{1}{2})?k≥{a}_{n}$恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知半圓O的半徑為1,點(diǎn)C在直徑AB的延長線上,且BC=1,P是半圓上動點(diǎn),以PC為一邊作等腰直角三角形PCK(K為直角頂點(diǎn),且K和O在PC的兩側(cè)).
(1)求四邊形OPKC面積的最大值;
(2)設(shè)t=$\frac{△POC的面積}{△PCK的面積}$,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)F(-c,0)(c>0)是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左焦點(diǎn),過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點(diǎn)P,且點(diǎn)P在拋物線y2=4cx上,則該雙曲線的離心率是(  )
A.$\frac{{3+\sqrt{5}}}{2}$B.$\sqrt{\frac{{\sqrt{5}+1}}{2}}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知不等式$ax-\frac{1}{a}>0$的解集為(1,+∞),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\}$,$B=\left\{{\left.y\right|y=2-\frac{1}{{{x^2}+1}}}\right\}$,則A∩B=( 。
A.[1.2]B.(1.2]C.[1.2)D.

查看答案和解析>>

同步練習(xí)冊答案