精英家教網 > 高中數學 > 題目詳情

某校夏令營有3名男同學和3名女同學,其年級情況如下表:

 
一年級
二年級
三年級
男同學
A
B
C
女同學
X
Y
Z
 
現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同)
用表中字母列舉出所有可能的結果
為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件發(fā)生的概率.

(1)15,(2)

解析試題分析:(1)列舉事件,關鍵是按一定順序,做到不重不漏.從6名同學中隨機選出2人參加知識競賽的所有可能結果為
{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15種.(2) 為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6種.因此,事件發(fā)生的概率
試題解析:解(1)從6名同學中隨機選出2人參加知識競賽的所有可能結果為{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15種.(2)選出的2人來自不同年級且恰有1名男同學和1名女同學的所有可能結果為{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6種.因此,事件發(fā)生的概率
考點:古典概型概率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某地區(qū)為了解高二學生作業(yè)量和玩電腦游戲的情況,對該地區(qū)內所有高二學生采用隨機抽樣的方法,得到一個容量為200的樣本.統(tǒng)計數據如下:

(1)已知該地區(qū)共有高二學生42500名,根據該樣本估計總體,其中喜歡電腦游戲并認為作業(yè)不多的人有多少名?
(2)在A,B,C,D,E,F(xiàn)六名學生中,僅有A,B兩名學生認為作業(yè)多.如果從這六名學生中隨機抽取兩名,求至少有一名學生認為作業(yè)多的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
根據世行2013年新標準,人均GDP低于1035美元為低收入國家;人均GDP為1035-4085元為中等偏下收入國家;人均GDP為4085-12616美元為中等偏上收入國家;人均GDP不低于12616美元為高收入國家.某城市有5個行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:

(1)判斷該城市人均GDP是否達到中等偏上收入國家標準;
(2)現(xiàn)從該城市5個行政區(qū)中隨機抽取2個,求抽到的2個行政區(qū)人均GDP都達到中等偏上收入國家標準的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調查中,隨機抽取了100名電視觀眾,相關的數據如下表所示:

 
文藝節(jié)目
新聞節(jié)目
總計
20至40歲
40
18
58
大于40歲
15
27
42
總計
55
45
100
 
(1)由表中數據直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應該抽取幾名?
(3)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上
的產量均具有隨機性,且互不影響,其具體情況如下表:

(1)設表示在這塊地上種植1季此作物的利潤,求的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

李明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設各場比賽相互獨立):

場次
投籃次數
命中次數
場次
投籃次數
命中次數
主場1
22
12
客場1
18
8
主場2
15
12
客場2
13
12
主場3
12
8
客場3
21
7
主場4
23
8
客場4
18
15
主場5
24
20
客場5
25
12
 
(1)從上述比賽中隨機選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率;
(3)記為表中10個命中次數的平均數,從上述比賽中隨機選擇一場,記為李明在這場比賽中的命中次數,比較的大。ㄖ恍鑼懗鼋Y論)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一批產品需要進行質量檢驗,質檢部門規(guī)定的檢驗方案是:先從這批產品中任取3件作檢驗,若3件產品都是合格品,則通過檢驗;若有2件產品是合格品,則再從這批產品中任取1件作檢驗,這1件產品是合格品才能通過檢驗;若少于2件合格品,則不能通過檢驗,也不再抽檢. 假設這批產品的合格率為80%,且各件產品是否為合格品相互獨立.
(1)求這批產品通過檢驗的概率;
(2)已知每件產品檢驗費為125元,并且所抽取的產品都要檢驗,記這批產品的檢驗費為元,求的概率分布及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

受轎車在保修期內維修費等因素的影響,企業(yè)生產每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數據如下:

品牌

 
 

 
首次出現(xiàn)故障時間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數量(輛)
2
3
45
5
45
每輛利潤(萬元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問題:
(1)從該廠生產的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內的概率;
(2)若該廠生產的轎車均能售出,記生產一輛甲品牌轎車的利潤為X1,生產一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌的轎車.若從經濟效益的角度考慮,你認為應生產哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知復數z=x+yi(x,y∈R)在復平面上對應的點為M.
(1)設集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數作為x,從集合Q中隨機取一個數作為y,求復數z為純虛數的概率;
(2)設x∈[0,3],y∈[0,4],求點M落在不等式組:所表示的平面區(qū)域內的概率.

查看答案和解析>>

同步練習冊答案