某校夏令營有3名男同學和3名女同學,其年級情況如下表:
| 一年級 | 二年級 | 三年級 |
男同學 | A | B | C |
女同學 | X | Y | Z |
(1)15,(2)
解析試題分析:(1)列舉事件,關鍵是按一定順序,做到不重不漏.從6名同學中隨機選出2人參加知識競賽的所有可能結果為
{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15種.(2) 為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6種.因此,事件發(fā)生的概率
試題解析:解(1)從6名同學中隨機選出2人參加知識競賽的所有可能結果為{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15種.(2)選出的2人來自不同年級且恰有1名男同學和1名女同學的所有可能結果為{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6種.因此,事件發(fā)生的概率
考點:古典概型概率
科目:高中數學 來源: 題型:解答題
某地區(qū)為了解高二學生作業(yè)量和玩電腦游戲的情況,對該地區(qū)內所有高二學生采用隨機抽樣的方法,得到一個容量為200的樣本.統(tǒng)計數據如下:
(1)已知該地區(qū)共有高二學生42500名,根據該樣本估計總體,其中喜歡電腦游戲并認為作業(yè)不多的人有多少名?
(2)在A,B,C,D,E,F(xiàn)六名學生中,僅有A,B兩名學生認為作業(yè)多.如果從這六名學生中隨機抽取兩名,求至少有一名學生認為作業(yè)多的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
根據世行2013年新標準,人均GDP低于1035美元為低收入國家;人均GDP為1035-4085元為中等偏下收入國家;人均GDP為4085-12616美元為中等偏上收入國家;人均GDP不低于12616美元為高收入國家.某城市有5個行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:
(1)判斷該城市人均GDP是否達到中等偏上收入國家標準;
(2)現(xiàn)從該城市5個行政區(qū)中隨機抽取2個,求抽到的2個行政區(qū)人均GDP都達到中等偏上收入國家標準的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調查中,隨機抽取了100名電視觀眾,相關的數據如下表所示:
| 文藝節(jié)目 | 新聞節(jié)目 | 總計 |
20至40歲 | 40 | 18 | 58 |
大于40歲 | 15 | 27 | 42 |
總計 | 55 | 45 | 100 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上
的產量均具有隨機性,且互不影響,其具體情況如下表:
(1)設表示在這塊地上種植1季此作物的利潤,求的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
李明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設各場比賽相互獨立):
場次 | 投籃次數 | 命中次數 | 場次 | 投籃次數 | 命中次數 |
主場1 | 22 | 12 | 客場1 | 18 | 8 |
主場2 | 15 | 12 | 客場2 | 13 | 12 |
主場3 | 12 | 8 | 客場3 | 21 | 7 |
主場4 | 23 | 8 | 客場4 | 18 | 15 |
主場5 | 24 | 20 | 客場5 | 25 | 12 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一批產品需要進行質量檢驗,質檢部門規(guī)定的檢驗方案是:先從這批產品中任取3件作檢驗,若3件產品都是合格品,則通過檢驗;若有2件產品是合格品,則再從這批產品中任取1件作檢驗,這1件產品是合格品才能通過檢驗;若少于2件合格品,則不能通過檢驗,也不再抽檢. 假設這批產品的合格率為80%,且各件產品是否為合格品相互獨立.
(1)求這批產品通過檢驗的概率;
(2)已知每件產品檢驗費為125元,并且所抽取的產品都要檢驗,記這批產品的檢驗費為元,求的概率分布及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
受轎車在保修期內維修費等因素的影響,企業(yè)生產每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數據如下:
品牌 | 甲 | | | 乙 | |
首次出現(xiàn)故障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤(萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知復數z=x+yi(x,y∈R)在復平面上對應的點為M.
(1)設集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數作為x,從集合Q中隨機取一個數作為y,求復數z為純虛數的概率;
(2)設x∈[0,3],y∈[0,4],求點M落在不等式組:所表示的平面區(qū)域內的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com