已知集合A={x|x2+2x-8>0},B={x|x2-2ax+4≤0},若a>0,且A∩B中恰有1個整數(shù),求a的取值范圍.
考點:交集及其運算
專題:集合
分析:求出A中不等式的解集確定出A,表示出B中不等式的解集,根據(jù)a大于0,且A與B的交集恰有1個整數(shù),求出a的范圍即可.
解答: 解:由A中不等式變形得:(x-2)(x+4)>0,
解得:x<-4或x>2,即A=(-∞,-4)∪(2,+∞),
由B中x2-2ax+4≤0,
解得:a-
a2-4
≤x≤a+
a2-4
,即B=[a-
a2-4
,a+
a2-4
],
∵a>0,且A∩B中恰有1個整數(shù),
-6<a-
a2-4
<-5
-5<a+
a2-4
<-4
(舍去)或
2<a-
a2-4
<3
2<a+
a2-4
<4
a>0
,
解得:
3
2
<a<
11
6

則a的范圍為(
3
2
,
11
6
).
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},其中f(x)是一個二次項系數(shù)為1的二次函數(shù),若A是單元素集合時,求證:A=B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an}的公比為q,其前n項積為Tn,并滿足a1>1,
a9a10-1
a9a11-1
<0
,則以下結(jié)論錯誤的是( 。
A、0<q<1
B、Tn的最大值是T10
C、a9a10>1
D、使Tn>1的最大自然數(shù)n為18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知π<β<2π且tanβ=-2,求sinβ-cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(i-
1
i
3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(1+x)lnx,g(x)=a(1-x)
(1)是否存在實數(shù)a,使g(x)是f(x)在x=1處的切線?
(2)若函數(shù)y=f(x)+g(x)是增函數(shù),求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某空間幾何體的三視圖如圖所示(其中俯視圖的弧線為四分之一圓),則該幾何體的表面積為( 。
A、5π+4B、8π+4
C、5π+12D、8π+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是
x=2+2cosφ
y=2sinφ
(φ為參數(shù))和
x=cosφ
y=1+sinφ
(φ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:x2-x>lnx,x∈(0,1)

查看答案和解析>>

同步練習(xí)冊答案