【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
【答案】(Ⅰ)見解析(Ⅱ).
【解析】
(I)取的中點,連接,通過證明平面得出;
(II)以為原點建立坐標系,求出平面的法向量,通過計算與的夾角得出與平面所成角.
(I)證明:取AC的中點M,連接PM,BM,
∵AB=BC,PA=PC,
∴AC⊥BM,AC⊥PM,又BM∩PM=M,
∴AC⊥平面PBM,
∵BP平面PBM,
∴AC⊥BP.
(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,
∴∠ABC=120°,
∵AB=BC=1,∴AC,BM,∴AC⊥CD,
又AC⊥BM,∴BM∥CD.
∵PA=PC,CM,∴PM,
∵PB,∴cos∠BMP,∴∠PMB=120°,
以M為原點,以MB,MC的方向為x軸,y軸的正方向,
以平面ABCD在M處的垂線為z軸建立坐標系
則A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),
∴(﹣1,,0),(0,,0),(,,),
設(shè)平面ACP的法向量為(x,y,z),則,即,
令x得(,0,1),
∴cos,,
∴直線AD與平面APC所成角的正弦值為|cos,|.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,平面,,,.
(1)求證:平面;
(2)求證:在線段上存在一點,使得,并指明點的位置;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的標準方程;
(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC是以AC為斜邊的等腰直角三角形,△BCD是等邊三角形.如圖②,將△BCD沿BC折起,使平面BCD⊥平面ABC,記BC的中點為E,BD的中點為M,點F、N在棱AC上,且AF=3CF,C.
(1)試過直線MN作一平面,使它與平面DEF平行,并加以證明;
(2)記(1)中所作的平面為α,求平面α與平面BMN所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對任意的,都有則關(guān)于對稱。
其中所有正確的結(jié)論序號為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點F與拋物線焦點重合,且橢圓的離心率為,過軸正半軸一點 且斜率為的直線交橢圓于兩點.
(1)求橢圓的標準方程;
(2)是否存在實數(shù)使以線段為直徑的圓經(jīng)過點,若存在,求出實數(shù)的值;若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com