【題目】有9本不同的課外書,分給甲、乙、丙三名同學(xué),求在下列條件下,各有多少種分法?

(1)甲得4本,乙得3本,丙得2本;

(2)一人得4本,一人得3本,一人得2本;

(3)甲、乙、丙各得3本.

【答案】(1)1 260種 (2)7 560種 (3)1 680種

【解析】(1)分三步完成:

第一步:從9本不同的書中,任取4本分給甲,有種方法;

第二步:從余下的5本書中,任取3本給乙,有種方法;

第三步:把剩下的書給丙,種方法,

∴共有不同的分法有··=1 260(種).

(2)分兩步完成:

第一步:將4本、3本、2本分成三組有··種方法;

第二步:將分成的三組書分給甲、乙、丙三個(gè)人,有種方法,

∴共有···=7 560(種).

(3)用與(1)相同的方法求解,得··=1 680(種).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , .

(1)在平面內(nèi)找一點(diǎn),使得直線平面,并說明理由;

(2)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,左頂點(diǎn)為,過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).

(1)求橢圓的方程;

(2)已知的中點(diǎn),是否存在定點(diǎn),對(duì)于任意的都有,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)若過點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為矩形, , ,平面平面, 、分別為、的中點(diǎn).

)求證:

)求證: 平面

)若過的平面交于點(diǎn),交,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )

A. 若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行

B. 若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行

C. 若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行

D. 若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),M為平面上任一點(diǎn),A,B,C三點(diǎn)滿足

(1)的值;

(2)已知A(1,sinx)、B(1+sinx,sinx),M(1+sinx,sinx),x∈(0,π),且函數(shù)

的最小值為,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是( )

①“若x2+y20,則x,y不全為零的否命題 ②“正多邊形都相似的逆命題

③“若m>0,則x2+x-m=0有實(shí)根的逆否命題④“若x-是有理數(shù),則x是

無理數(shù)的逆否命題

A、①②③④ B、①③④ C、②③④ D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作圓 的切線, 為坐標(biāo)原點(diǎn),切點(diǎn)為,且.

(1)求的值;

(2)設(shè)是圓上位于第一象限內(nèi)的任意一點(diǎn),過點(diǎn)作圓的切線,且軸于點(diǎn),交y軸于點(diǎn),設(shè),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案