經(jīng)過拋物線y2=2px的焦點(diǎn)F作傾角為θ的直線,若該直線與拋物線交于P1、P2兩點(diǎn).
(1)求|P1P2|;
(2)當(dāng)θ變化時(shí),求|P1P2|的最小值.
【答案】分析:(1)根據(jù)題意可求得拋物線的焦點(diǎn),進(jìn)而可求得直線的方程,設(shè)P1(x1,y1),P2(x2,y2)把直線與拋物線方程聯(lián)立消去x,根據(jù)韋達(dá)定理求得x1+x2,然后根據(jù)拋物線定義可求得|P1P2|=x1+x2+p,答案可得.
(2)根據(jù)(1)中關(guān)于|P1P2|的表達(dá)式化簡整理后可知當(dāng)θ=時(shí),由最小值.
解答:解:(1)拋物線焦點(diǎn)坐標(biāo)為(,0),
當(dāng)θ=90°時(shí),將x=代入,可解得P1、P2兩點(diǎn)的縱坐標(biāo)分別為-p,p,此時(shí)有|P1P2|=2p;
當(dāng)θ≠90°時(shí),則直線方程為y=tanθ(x-),P1(x1,y1),P2(x2,y2
代入拋物線方程得tan2θx2-(tan2θp+2p)x+=0
則x1+x2=
根據(jù)拋物線定義可知|P1P2|=x1+x2+=x1+x2+p==
又θ=90°時(shí),2p=
∴|P1P2|=
(2)由(1)可知|P1P2|=
∵-1≤sinθ≤1,
≥2p,當(dāng)θ=90°時(shí)等號(hào)成立
即|P1P2|的最小值為2p.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.涉及弦長問題,常用“韋達(dá)定理法”設(shè)而不求計(jì)算弦長(即應(yīng)用弦長公式).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線y2=2p(x+2p)(p>0)的頂點(diǎn)A作互相垂直的兩直線分別交拋物線于B、C兩點(diǎn),求線段BC的中點(diǎn)M軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州二模)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線經(jīng)過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左頂點(diǎn),點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=2p,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線y2=2pxp>0)的所有焦點(diǎn)弦中,弦長的最小值為( 。

A.p  ? ?              B.2p   ???  C.4p   ???  D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線y2=2pxp>0)的所有焦點(diǎn)弦中,弦長的最小值為( 。

A.p  ? ?              B.2p   ???  C.4p   ???  D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第8章 圓錐曲線):8.7 求軌跡方程(一)(解析版) 題型:解答題

經(jīng)過拋物線y2=2p(x+2p)(p>0)的頂點(diǎn)A作互相垂直的兩直線分別交拋物線于B、C兩點(diǎn),求線段BC的中點(diǎn)M軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案