分析 (1)S1=a1≠0,當n=1時,2a1-a1=a1•a1,解得a1,n≥2時,an=Sn-Sn-1=2an-1,即可證明.
(2)an=2n-1.nan=n•2n-1.利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(1)∵S1=a1≠0,∴當n=1時,2a1-a1=a1•a1,解得a1=1,
下面證明:數(shù)列{an}為等比數(shù)列.n≥2時,an=Sn-Sn-1=$\frac{2{a}_{n}-{a}_{1}}{{S}_{1}}$-$\frac{2{a}_{n-1}-{a}_{1}}{{S}_{1}}$,化為:an=2an-1.
∴數(shù)列{an}為等比數(shù)列,公比為2,首項為1.
(2)an=2n-1.
nan=n•2n-1.
∴數(shù)列{nan}的前n項和Tn=1+2×2+3×22+…+n•2n-1,
∴2Tn=2+2×22+…+(n-1)•2n-1+n•2n,
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n,
∴Tn=(n-1)•2n+1.
點評 本題考查了“錯位相減法”、等比數(shù)列的定義與通項公式求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a+\frac{1}>b+\frac{1}{a}$ | B. | $\frac{a}>\frac{b+1}{a+1}$ | C. | $a-\frac{1}>b-\frac{1}{a}$ | D. | $\frac{2a+b}{a+2b}>\frac{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{12}$ | D. | -$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{15}{8}$ | B. | -$\frac{5}{4}$ | C. | -$\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分數(shù) | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com