若方程僅有一解,則實數(shù)的取值范圍是        

試題分析:,所以,方程僅有一解,即,半圓只有一個交點,如圖所示,可知實數(shù)的取值范圍是

點評:典型題,利用轉化與化歸思想,將方程解的問題,轉化成直線與圓的位置關系問題,應用數(shù)形結合思想,使問題得解。難度不大,貴在轉化。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,,是某地一個湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋上某點分別修建與平行的棧橋、,且以、為邊建一個跨越水面的三角形觀光平臺.建立如圖2所示的直角坐標系,測得線段的方程是,曲線段的方程是,設點的坐標為,記.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度)

(1)求的取值范圍;
(2)試寫出三角形觀光平臺面積關于的函數(shù)解析式,并求出該面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知邊長為8米的正方形鋼板有一個角銹蝕,其中米,米. 為了合理利用這塊鋼板,將在五邊形內截取一個矩形塊,使點在邊上. 則矩形面積的最大值為____    平方米 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上為減函數(shù),則a的取值范圍為(   )
A.0<aB.0≤aC.0<aD.a>

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),則的值等于(    )
A.-8B.-3C.3D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個月。經(jīng)氣象局統(tǒng)計,北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣。《環(huán)境空氣質量指數(shù)(AQI)技術規(guī)定(試行)》將空氣質量指數(shù)分為六級:其中,中度污染(四級),指數(shù)為151—200;重度污染(五級),指數(shù)為201—300;嚴重污染(六級),指數(shù)大于300. 下面表1是該觀測點記錄的4天里,AQI指數(shù)與當天的空氣水平可見度(千米)的情況,表2是某氣象觀測點記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計結果,
表1:AQI指數(shù)與當天的空氣水平可見度(千米)情況
AQI指數(shù)




空氣可見度(千米)




表2:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計
AQI指數(shù)





頻數(shù)
3
6
12
6
3
(Ⅰ)設變量,根據(jù)表1的數(shù)據(jù),求出關于的線性回歸方程;
(Ⅱ)根據(jù)表2估計這30天AQI指數(shù)的平均值.
(用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示是某水產(chǎn)養(yǎng)殖廠的養(yǎng)殖大網(wǎng)箱的平面圖,四周的實線為網(wǎng)衣,為避免混養(yǎng),
(1)若大網(wǎng)箱的面積為108平方米,每個小網(wǎng)箱的橫邊、縱邊設計為多少米時,才能使圍成的網(wǎng)箱中篩網(wǎng)的總長度最小?
(2)若大網(wǎng)箱的面積為160平方米,網(wǎng)衣的造價為112元/米,篩網(wǎng)的造價為96元/米,且大網(wǎng)箱的長與寬都不超過15米,則小網(wǎng)箱的橫、縱邊分別為多少米時,可使總造價最低?

查看答案和解析>>

同步練習冊答案