已知數(shù)列{an}的前三項分別為a1=5,a2=6,a3=8,且數(shù)列{an}的前n項和Sn滿足Snm(S2nS2m)-(nm)2,其中mn為任意正整數(shù).
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)求滿足an+33=k2的所有正整數(shù)k,n.

(1)Snn2+3n+1,n∈N*(2)n=10,k=131.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫出a2,a3的值(只寫結果),并求出數(shù)列{an}的通項公式;
(2)設bn+…+,若對任意的正整數(shù)n,當m∈[-1,1]時,不等式t2-2mt+>bn恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

各項均為正數(shù)的數(shù)列{an}中,設,,且,
(1)設,證明數(shù)列{bn}是等比數(shù)列;
(2)設,求集合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的前n項和Sn=2n2+2n,數(shù)列{bn}的前n項和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設cn·bn,證明:當且僅當n≥3時,cn+1<cn..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知Sn是數(shù)列{an}的前n項和,且anSn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項公式.
(2)設bn,Tnbn+1bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和滿足,又,.
(1)求實數(shù)k的值;
(2)問數(shù)列是等比數(shù)列嗎?若是,給出證明;若不是,說明理由;
(3)求出數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設不等式組所表示的平面區(qū)域為Dn,記Dn內 的整點個數(shù)為an(n∈N*)(整點即橫坐標和縱坐標均為整數(shù)的點).
(1) 求證:數(shù)列{an}的通項公式是an=3n(n∈N*).
(2) 記數(shù)列{an}的前n項和為Sn,且Tn.若對于一切的正整數(shù)n,總有Tn≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項公式;
(3)求數(shù)列的前n項和.

查看答案和解析>>

同步練習冊答案