如圖,正四棱柱ABCD-A1B1C1D1的底面邊長是,側(cè)棱長是3,點E、F分別在BB1、DD1上,且3BE=BB1,3DF=DD1

(1)求證:A1C⊥平面AEF;

(2)求二面角A-EF-B的大。

答案:
解析:

  解:(1)三垂線定理證:應(yīng)用相似△,

  可推出:A1B⊥AE,又A1C在面ABB1A1內(nèi)的射影為A1B,

  所以A1C⊥AE,同理證:A1C⊥AF  

  ∴A1C⊥平面EFA.

  (2)二面角的大小


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.

(1)求證:AC1∥平面CNB1

(2)求四棱錐C-ANB1A1的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

同步練習(xí)冊答案