已知函數(shù)f(x)=x+
1
x

(Ⅰ)判斷函數(shù)的奇偶性,并加以證明;
(Ⅱ)用定義證明f(x)在(0,1)上是減函數(shù);
(Ⅲ)函數(shù)f(x)在[-1,0)上是否有最大值和最小值?如果有最大值或最小值,請求出最值.
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:(I)用函數(shù)奇偶性定義證明,要注意定義域.(II)先任取兩個變量,且界定大小,再作差變形看符號,(III)由函數(shù)圖象判斷即可.
解答: 解:(Ⅰ)證明:(I)函數(shù)為奇函數(shù)f(-x)=-x-
1
x
=-f(x),
(II)設(shè)x1,x2∈(0,1)且x1<x2,
f(x2)-f(x1)=x2+
1
x2
-x1-
1
x1
=
(x2-x1)(x1x2-1)
x1x2
,
∵0<x1<x2<1,∴x1x2<1,x1x2-1<0,
∵x2>x1∴x2-x1>0.
∴f(x2)-f(x1)<0,f(x2)<f(x1),
因此函數(shù)f(x)在(0,1)上是減函數(shù),
(III)由(Ⅰ)(Ⅱ)得:
f(x)在[-1,0)上是減函數(shù),
∴f(x)max=f(-1)=-2,無最小值.
點評:本題主要考查函數(shù)奇偶性和單調(diào)性定義,要注意奇偶性要先判斷,單調(diào)性變形要到位.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=lg(x2-x-2)的定義域為集合A,函數(shù)g(x)=
9-x2
的定義域為集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求實數(shù)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)
1
2
(x-t)2+x-t-1≤x-1的定義域為R,對任意實數(shù)m,n都有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1.
(1)證明:f(0)=1,且x<0時,f(x)>1;
(2)證明:f(x)在R上單調(diào)遞減;
(3)設(shè)A={(x,y)|f(x2)•f(y)=f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},A∩B=Φ,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)不等式(m2-2m-2)x2-mx+2x<f(x)的解集為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=
2
,BC=
3
,AA1=
6
,則異面直線AB1與BC1所成角的大小為( 。
A、60°B、45°
C、30°D、15°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)對任意a>0且a≠1,都有f(ax)=af(x),則稱函數(shù)為“穿透”函數(shù),則下列函數(shù)中,不是“穿透”函數(shù)的是(  )
A、f(x)=-x
B、f(x)=x+1
C、f(x)=|x|
D、f(x)=x-|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面α的斜線l與它在這個平面上射影l(fā)′的方向向量分別為
a
=(1,0,1),
b
=(0,1,1),則斜線l與平面α所成的角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算sin
11π
4
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線x+y+1=0被圓x2+y2-6x-2y-15=0截得的弦長等于
 

查看答案和解析>>

同步練習冊答案