已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足.
(1) 求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值。若不存在,說明理由。
(1) (2)2
【解析】(1)依題意可得,
,
由已知得,化簡得曲線C的方程:
(2)假設(shè)存在點(diǎn)P(0,t)(t<0)滿足條件,則直線PA的方程是,直線PB的方程是,曲線C在點(diǎn)Q處的切線l的方程為它與y軸的交點(diǎn)為,由于,因此
①當(dāng)時(shí), ,存在,使得,即l與直線PA平行,故當(dāng)時(shí)不符合題意
②當(dāng)時(shí),,所以l 與直線PA,PB一定相交,分別聯(lián)立方程組,
解得D,E的橫坐標(biāo)分別是
則,又,
有,又
于是
對任意,要使△QAB與△PDE的面積之比是常數(shù),只需t滿足,
解得t=-1,此時(shí)△QAB與△PDE的面積之比為2,故存在t=-1,使△QAB與△PDE的面積之比是常數(shù)2。
【點(diǎn)評】本題以平面向量為載體,考查拋物線的方程,直線與拋物線的位置關(guān)系以及分類討論的數(shù)學(xué)思想. 高考中,解析幾何解答題一般有三大方向的考查.一、考查橢圓的標(biāo)準(zhǔn)方程,離心率等基本性質(zhì),直線與橢圓的位置關(guān)系引申出的相關(guān)弦長問題,定點(diǎn),定值,探討性問題等;二、考查拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線等基本性質(zhì),直線與拋物線的位置關(guān)系引申出的相關(guān)弦長問題,中點(diǎn)坐標(biāo)公式,定點(diǎn),定值,探討性問題等;三、橢圓,雙曲線,拋物線綜合起來考查.一般橢圓與拋物線結(jié)合考查的可能性較大,因?yàn)樗鼈兌际强季V要求理解的內(nèi)容.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
MA |
MB |
OM |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
MA |
MB |
MA |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考江西卷理科20) (本題滿分13分)
已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足.
(1) 求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值。若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com