已知函數(shù)f(x)滿足f(2x-1)=
1
2
f(x)+x2-x+2
,則函數(shù)f(x)在(1,f(1))處的切線是(  )
分析:先根據(jù)f(2x-1)=
1
2
f(x)+x2-x+2
,再邊對x求導(dǎo),求出函數(shù)f'(1)的值,可得到y(tǒng)=f(x)在點(1,f(1))處的切線方程的斜率,最后根據(jù)點斜式可求導(dǎo)切線方程.
解答:解:∵f(2x-1)=
1
2
f(x)+x2-x+2
,
再邊對x求導(dǎo),∴2f'(2x-1)=
1
2
f'(x)+2x-1.令x=1,
∴2f'(1)=
1
2
f'(1)+1.
∴f'(1)=
2
3

∴y=f(x)在(1,f(1))處的切線斜率為k=
2
3

又在f(2x-1)=
1
2
f(x)+x2-x+2
中令x=1,得f(1)=4
∴函數(shù)y=f(x)在(1,f(1))處的切線方程為y-4=
2
3
(x-1),
即2x-3y+10=0.
故選B.
點評:本題主要考查求函數(shù)解析式的方法和函數(shù)的求導(dǎo)法則以及導(dǎo)數(shù)的幾何意義.函數(shù)在某點的導(dǎo)數(shù)值等于該點的切線方程的斜率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時,求f(n)的表達式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當x≥0時,曲線y=f(x)在點M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點個數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當x≥1時,f(x)=f(x-1);當x<1時,f(x)=2x,則f(log27)=(  )

查看答案和解析>>

同步練習(xí)冊答案