分析 (1)設(shè)出函數(shù)的解析式,通過待定系數(shù)法求出函數(shù)的解析式即可;
(2)求出h(x)的解析式,根據(jù)函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性即可.
解答 解:(1)因?yàn)閒(x)是一次函數(shù),g(x)是反比例函數(shù)
∴設(shè)f(x)=ax+b(a≠0),g(x)=$\frac{k}{x}$(k≠0),
∵f[f(x)]=x+2,
∴a(ax+b)+b=x+2,
∴a2x+(a+1)b=x+2,
∴$\left\{\begin{array}{l}{{a}^{2}=1}\\{(a+1)b=2}\end{array}\right.$,解得:a=1,b=1,
故f(x)=x+1;
∵g(1)=-1,故k=-1,
故g(x)=-$\frac{1}{x}$;
(2)判斷:函數(shù)h(x)在(0,+∞)上是增函數(shù),
由(1)知h(x)=$x-\frac{1}{x}$+1,設(shè)x1,x2是(0,+∞)上的任意兩個(gè)實(shí)數(shù),且x1<x2,
h(x1)-h(x2)=(x1-$\frac{1}{{x}_{1}}$)-(x2-$\frac{1}{{x}_{2}}$)=(x1-x2)(1+$\frac{1}{{{x}_{1}x}_{2}}$),
∵0<x1<x2,∴x1-x2<0,x1x2>0,
∴h(x1)-h(x2)<0,即h(x1)<h(x2),
∴函數(shù)h(x)在(0,+∞)遞增.
點(diǎn)評(píng) 本題考查了待定系數(shù)法求函數(shù)的解析式問題,考查定義法判斷函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | [1,+∞) | C. | (0,2] | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com