已知向量。
(1)若,求的值;
(2)記,在中,角的對(duì)邊分別是,且滿(mǎn)足,求函數(shù)的取值范圍。
(1)
(2)
解析試題分析:解:(1)
(2)
又
的取值范圍為
考點(diǎn):向量的數(shù)量積,三角函數(shù)的性質(zhì)
點(diǎn)評(píng):主要是考查了三角函數(shù)的性質(zhì)以及向量的數(shù)量積的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a=(1,2),b=(-2,n) (n>1),a與b的夾角是45°.
(1)求b;
(2)若c與b同向,且a與c-a垂直,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,且.
(1)將表示為的函數(shù),并求的單調(diào)增區(qū)間;
(2)已知分別為的三個(gè)內(nèi)角對(duì)應(yīng)的邊長(zhǎng),若,求 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知: 、、是同一平面內(nèi)的三個(gè)向量,其中 =(1,2)
⑴若||,且,求的坐標(biāo);
⑵若||=且垂直,求與的夾角θ。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
向量,,設(shè)函數(shù),(,且為常數(shù))
(1)若為任意實(shí)數(shù),求的最小正周期;
(2)若在上的最大值與最小值之和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知滿(mǎn)足,且與之間有關(guān)系式,其中.
(Ⅰ)用表示;
(Ⅱ)求的最小值,并求此時(shí)與的夾角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為兩個(gè)不共線(xiàn)向量.
(1)試確定實(shí)數(shù)k,使共線(xiàn);
(2),求使三個(gè)向量的終點(diǎn)在同一條直線(xiàn)上的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com