選修4-5:不等式選講(本小題滿分10分)

設(shè)函數(shù),其中

(Ⅰ)當(dāng)時(shí),求不等式的解集;

(Ⅱ)若不等式的解集為,求a的值。

 

【答案】

(Ⅰ);(II).

【解析】

試題分析:(Ⅰ)當(dāng)時(shí),可化為。

由此可得 。

故不等式的解集為。…………5分

( Ⅱ) 由 得    

此不等式化為不等式組 或

         或

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013032608250365626803/SYS201303260825425781964486_DA.files/image015.png">,所以不等式組的解集為

由題設(shè)可得= ,故            …………10分

考點(diǎn):含絕對(duì)值不等式的解法。

點(diǎn)評(píng):解含絕對(duì)值不等式的主要思想是分類討論,通過(guò)分類討論,去掉絕對(duì)值符號(hào)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4一5:不等式選講
設(shè)a∈R且a≠-
2
,比較
2
2
+a
2
-a
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
求矩陣A=
2,1
3,0
的特征值及對(duì)應(yīng)的特征向量.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線l和圓C的位置關(guān)系.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌縣一模)選修4一5:不等式選講
設(shè)函數(shù)f(x)=|x-1|+|x-a|.
(I)若a=-1,解不等式,f(x)≥3;
(II)如果對(duì)于任意實(shí)數(shù)x,恒有f(x)≥2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州二模)選修4一5:不等式選講
設(shè)函數(shù)f(x)=|2x-a|+5x,其中a>0.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≥5x+1的解集;
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案