甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測(cè)試成績(jī)得分情況為:
甲:10分,13分,12分,14分,16分;
乙:13分,14分,12分,12分,14分.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)已學(xué)統(tǒng)計(jì)知識(shí)及上面算得的結(jié)果,對(duì)兩人的訓(xùn)練成績(jī)作出評(píng)價(jià).
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差,眾數(shù)、中位數(shù)、平均數(shù)
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(1)把題意中的數(shù)據(jù)代入平均數(shù)的公式、方差的公式,分別求出兩人得分的平均數(shù)與方差;
(2)由(1)求出的平均數(shù)、方差,分別判斷出甲、乙兩人的平均水平、發(fā)揮的穩(wěn)定情況、發(fā)展趨勢(shì).
解答: 解:(1)由題意得,
.
x
=
10+13+12+14+16
5
=13
,
.
x
=
13+14+12+12+14
5
=13

所以s2=
1
5
[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]
=4,
s2=
1
5
[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]
=0.8,
(2)由(1)兩人平均水平相同,
s2>s2可知乙的成績(jī)較甲更穩(wěn)定,
但甲的成績(jī)?cè)诓粩嗵岣撸业某煽?jī)則無(wú)明顯提高.
點(diǎn)評(píng):本題考查平均數(shù)的公式、方差的公式,以及它們反應(yīng)的情況,考查里計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用“充分條件”和“必要條件”填空:“xy=1”是“l(fā)gx+lgy=0”的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=|n-10|,則滿足ak+ak+1+…+ak+7=18(k∈N*)的k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是奇函數(shù)且在(-∞,0)上是減函數(shù),f(-1)=0則不等式xf(x)<0的解集為( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足
x≥1
x+y≤4
x+by+c≤0
記目標(biāo)函數(shù)z=2x+y的最小值為1,最大值為7,則b,c的值分別為( 。
A、-1,-2B、-2,-1
C、1,2D、1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方體ABCD-A1B1C1D1中,異面直線AD1與A1C所成的角的大小是( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過(guò)點(diǎn)P的動(dòng)弦AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(Ⅰ)求M的軌跡方程;
(Ⅱ)當(dāng)|OP|=|OM|時(shí),求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-x2(0≤x≤3)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4x-2x+2+3,x∈[0,2],求函數(shù)f(x)的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案