解答:解:(1)所有可能的結(jié)果為:(數(shù)甲,物甲,化甲),(數(shù)甲,物甲,化乙),(數(shù)甲,物甲,化丙),(數(shù)甲,物乙,化甲),
(數(shù)甲,物乙,化乙),(數(shù)甲,物乙,化丙),(數(shù)甲,物丙,化甲),(數(shù)甲,物丙,化乙),
(數(shù)甲,物丙,化丙),(數(shù)乙,物甲,化甲),(數(shù)乙,物甲,化乙),(數(shù)乙,物甲,化丙),
(數(shù)乙,物乙,化甲),(數(shù)乙,物乙,化乙),(數(shù)乙,物乙,化丙),(數(shù)乙,物丙,化甲),
(數(shù)乙,物丙,化乙),(數(shù)乙,物丙,化丙),(數(shù)丙,物甲,化甲),(數(shù)丙,物甲,化乙),
(數(shù)丙,物甲,化丙),(數(shù)丙,物乙,化甲),(數(shù)丙,物乙,化乙),(數(shù)丙,物乙,化丙),
(數(shù)丙,物丙,化甲),(數(shù)丙,物丙,化乙),(數(shù)丙,物丙,化丙),共27種結(jié)果.
(2)記事件A為“數(shù)學(xué)小組的甲同學(xué)沒有被選中,物理小組的乙同學(xué)被選中”,則A包含的基本事件為:(數(shù)乙,物乙,化甲),(數(shù)乙,物乙,化乙),(數(shù)乙,物乙,化丙),
(數(shù)丙,物乙,化甲),(數(shù)丙,物乙,化乙),(數(shù)丙,物乙,化丙),共6種結(jié)果,所有P(A)=
=.
(3)記事件B為“數(shù)學(xué)小組的甲同學(xué)和物理小組的乙同學(xué)中至少有一人不被選中”,則B的對立事件為“數(shù)學(xué)小組的甲同學(xué)和物理小組的乙同學(xué)中都被選中”,它包含的事件為
(數(shù)甲,物乙,化甲),(數(shù)甲,物乙,化乙),(數(shù)甲,物乙,化丙)共3種結(jié)果,
所有P(B)=
1-=.