若實數(shù)x,y滿足
x≤1
|y|≤x
,則z=2x+3y的最小值是
 
;在平面直角坐標系中,此不等式組表示的平面區(qū)域的面積是
 
考點:二元一次不等式(組)與平面區(qū)域
專題:計算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,根據(jù)線性規(guī)劃求z=2x+3y的最小值,由三角形的面積公式求其面積.
解答: 解:作出其平面區(qū)域如下圖:

則當(dāng)z=2x+3y過點A(1,-1)時有最小值;
z=2x+3y的最小值是2-3=-1;
此不等式組表示的平面區(qū)域的面積為2×
1
2
×1×1=1.
故答案為:-1,1.
點評:本題考查了線性規(guī)劃的應(yīng)用與解答,同時考查了三角形的面積公式,注意簡化運算即可,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
sinx-
3
sin2
x
2
+
3
2
+1.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)該函數(shù)圖象怎樣平移,能得到函數(shù)y=sinx的圖象?寫出平移的過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列an的前n項和Sn=a•2n-1+
1
6
,則a的值為( 。
A、
1
3
B、
1
2
C、-
1
3
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①一段長為36米的籬笆圍成一個矩形菜園,問這個矩形長寬為多少時,菜園面積最大,最大面積為多少?
②關(guān)于x的不等式x2+ax-2>0在區(qū)間[1,5]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人參加知識竟賽,共有10個不同的題目,其中選擇題6題,判斷題4題,若甲乙兩人分別各抽取一題,則甲抽到選擇題,乙抽到判斷題的概率是(  )
A、
10
19
B、
4
15
C、
15
19
D、
14
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的直線方程:
(1)經(jīng)過點P(2,-1)且與直線2x+3y+12=0平行;
(2)經(jīng)過點Q(-1,3)且與直線x+2y-1=0垂直;
(3)經(jīng)過點M(1,2)且與點A(2,3)、B(4,-5)距離相等;
(4)經(jīng)過點N(-1,3)且在x軸的截距與它在y軸上的截距的和為零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,{bn}為等比數(shù)列,其公比q≠1且bi>0(i=1,2,…,n),若a1=b1,a5=b5.則( 。
A、a3>b3
B、a3=b3
C、a3<b3
D、a3<b3或a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有4個函數(shù):①f1(x)=x2,x∈(-1,2);②f2(x)=-
1
x
;③f3(x)=0;④f4(x)=2x+
1
2x
,其中偶函數(shù)的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用分數(shù)指數(shù)冪表示
a
a
=
 

查看答案和解析>>

同步練習(xí)冊答案