精英家教網 > 高中數學 > 題目詳情
給出下列四個結論:①函數y=ax(a>0且a≠1)與函數y=logaax(a>0且a≠1)的定義域相同;②函數y=k3x(k>0)(k為常數)的圖象可由函數y=3x的圖象經過平移得到;③函數(x≠0)是奇函數且函數(x≠0)是偶函數;④函數y=cos|x|是周期函數.其中正確結論的序號是     .(填寫你認為正確的所有結論序號)
【答案】分析:根據題意,依次分析4個命題,①中兩個函數的定義域均為R,故正確;②因為k>0,所以存在t∈R,使得k=3t,y=k3x=3x+t(k>0),故正確;③可由奇偶函數的定義直接判斷得到;④y=cos|x|=cosx,故正確.
解答:解:①中兩個函數的定義域均為R,故正確;
②因為k>0,所以存在t∈R,使得k=3t,y=k3x=3x+t(k>0),故正確;
③中,,所以,所以函數(x≠0)是奇函數.
同理可判也為奇函數,故是偶函數.③正確.
④中y=cos|x|=cosx,故正確.
故答案為:①②③④
點評:本題考查函數的定義域、奇偶性、周期性、及函數圖象的變換等知識,綜合性較強.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列四個結論:①函數y=ax(a>0且a≠1)與函數y=logaax(a>0且a≠1)的定義域相同;②函數y=k3x(k>0)(k為常數)的圖象可由函數y=3x的圖象經過平移得到;③函數y=
1
2
+
1
2x-1
(x≠0)是奇函數且函數y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函數;④函數y=cos|x|是周期函數.其中正確結論的序號是
 
.(填寫你認為正確的所有結論序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段AC1上有兩個動點E,F,且EF=
3
3
.給出下列四個結論:
①BF∥CE;
②CE⊥BD;
③三棱錐E-BCF的體積為定值;
④△BEF在底面ABCD內的正投影是面積為定值的三角形;
其中,正確結論的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在正三棱錐P-ABC中,D為PA的中點,O為△ABC的中心,給出下列四個結論:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正確結論的序號是
③④
③④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•馬鞍山模擬)給出下列四個結論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對于任意實數x,有f(-x)=-f(x),g(-x)=g(x)且x>0時,f'(x)>0,g'(x)>0,則x<0時,f'(x)>g'(x).
其中正確結論的序號是
①④
①④
(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)已知平面α、β、γ、和直線l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;給出下列四個結論:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正確的是( 。

查看答案和解析>>

同步練習冊答案